yingweiwo

FIIN-3

Alias: FIIN3; FIIN 3; FIIN-3.
Cat No.:V4254 Purity: ≥98%
FIIN-3 is a novel, potent, selective, irreversible and the next-generation covalent FGFR inhibitor with an IC50 of 13.1, 21, 31.4, and 35.3 nM for FGFR1, FGFR2, FGFR3 and FGFR4, respectively.
FIIN-3
FIIN-3 Chemical Structure CAS No.: 1637735-84-2
Product category: EGFR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

FIIN-3 is a novel, potent, selective, irreversible and the next-generation covalent FGFR inhibitor with an IC50 of 13.1, 21, 31.4, and 35.3 nM for FGFR1, FGFR2, FGFR3 and FGFR4, respectively. FIIN-3 is the first inhibitor that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. FIIN-3 bound with FGFR4 V550L and EGFR L858R.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
FIIN-3 exhibits strong inhibition of both gatekeeper mutants of FGFR2 (EC50 = 64 nM) and WT FGFR (EC50 = 1 to 41 nM). Also, EGFR is significantly inhibited by FIIN-3, with an EC50 of 43 nM. The gatekeeper mutant V564F was effectively inhibited by FIIN-3, while the gatewaykeeper-plus-1 mutant E565K was also successfully targeted by FIIN-3. Furthermore, Ba transformed with EGFR vIII fusion protein (containing the WT EGFR kinase domain) /F3 cells demonstrate antiproliferative activity (EC50 of 135 nM). FIIN-3 exhibited moderate action against the EGFR mutant L858R/T790M mutant, with an EC50 of 231 nM, and greater activity against the EGFR mutant L858R (EC50 of 17 nM). Even at dosages as low as 3 nM, FIIN-3 totally blocked FGFR2 autophosphorylation on Tyr656/657 in WT FGFR2 Ba/F3 cells. FIIN-3 has the ability to partially inhibit FGFR2 mutant V564M autophosphorylation in FGFR2 V564M Ba/F3 cells, and to completely inhibit it at 300 nM [1].
References

[1]. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc Natl Acad Sci U S A, 2014 Nov 11, 111(45):E4869-77.

Additional Infomation
N-[4-[[[(2,6-dichloro-3,5-dimethoxyanilino)-oxomethyl]-[6-[4-(4-methyl-1-piperazinyl)anilino]-4-pyrimidinyl]amino]methyl]phenyl]-2-propenamide is a member of piperazines.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C34H36CL2N8O4
Molecular Weight
691.606844902039
Exact Mass
690.223
CAS #
1637735-84-2
PubChem CID
73707531
Appearance
White to off-white solid powder
Density
1.4±0.1 g/cm3
Boiling Point
909.4±65.0 °C at 760 mmHg
Flash Point
503.8±34.3 °C
Vapour Pressure
0.0±0.3 mmHg at 25°C
Index of Refraction
1.683
LogP
5.65
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
9
Rotatable Bond Count
11
Heavy Atom Count
48
Complexity
1020
Defined Atom Stereocenter Count
0
InChi Key
SFLKJNSBBVSPFE-UHFFFAOYSA-N
InChi Code
InChI=1S/C34H36Cl2N8O4/c1-5-30(45)40-24-8-6-22(7-9-24)20-44(34(46)41-33-31(35)26(47-3)18-27(48-4)32(33)36)29-19-28(37-21-38-29)39-23-10-12-25(13-11-23)43-16-14-42(2)15-17-43/h5-13,18-19,21H,1,14-17,20H2,2-4H3,(H,40,45)(H,41,46)(H,37,38,39)
Chemical Name
N-(4-((3-(2,6-dichloro-3,5-dimethoxyphenyl)-1-(6-((4-(4-methylpiperazin-1-yl)phenyl)amino)pyrimidin-4-yl)ureido)methyl)phenyl)acrylamide
Synonyms
FIIN3; FIIN 3; FIIN-3.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~10 mg/mL (~14.46 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (3.61 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (3.61 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (3.61 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.4459 mL 7.2295 mL 14.4590 mL
5 mM 0.2892 mL 1.4459 mL 2.8918 mL
10 mM 0.1446 mL 0.7230 mL 1.4459 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us