yingweiwo

FIN56

Alias: FIN-56; FIN56; FIN 56
Cat No.:V2767 Purity: ≥98%
FIN56 (FIN-56),a specific inducer of ferroptosis, causes the loss of GPX4 activity in cell lysates.
FIN56
FIN56 Chemical Structure CAS No.: 1083162-61-1
Product category: Ferroptosis
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

FIN56 (FIN-56), a specific inducer of ferroptosis, causes the loss of GPX4 activity in cell lysates. Squalene synthase is additionally bound to and activated. It has been discovered that inhibiting the lipid-repair enzyme GPX4 causes ferroptosis. GPX4 was made to degrade faster by FIN56. Independent of the GPX4 degradation, FIN56 also binds to and activates the isoprenoid biosynthesis enzyme squalene synthase. Through a mechanism involving the control of GPX4 protein abundance, FIN56 causes ferroptosis. Overexpression of the GFP-GPX4 fusion protein prevents the cell death caused by FIN56. It binds to and activates squalene synthase, an enzyme involved in the synthesis of cholesterol, to suppress non-steroidogenic metabolites—likely coenzyme Q10—in the mevalonate pathway, increasing sensitivity to FIN56-induced ferroptosis.

Biological Activity I Assay Protocols (From Reference)
Targets
Ferroptosis
ln Vitro
FIN56 is a specific inducer of ferroptosis. The mechanism involves two distinct pathways: one leads to the degradation of GPX4, which necessitates the enzymatic activity of acetyl-CoA carboxylase, and the other activates squalene synthase, which depletes coenzyme Q10 without relying on the degradation of GPX4[1].
ln Vivo
NA
Enzyme Assay
FIN56 causes the loss of GPX4 activity in cell lysates. FIN56-induced cell death is suppressed by GFP-GPX4 fusion protein overexpression. FIN56 triggers ferroptosis through a mechanism involving the regulation of GPX4 protein abundance.
Cell Assay
In a 10-cm dish, 500,000 HT-1080 cells are seeded. For 16 hours, cells are grown at 37 °C. Cells are cotreated with 100 μM -tocopherol and either a vehicle (DMSO) or a ferroptosis inducer (10 μM erastin, 0.5 μM (1S, 3R)-RSL3, or 5 μM FIN56) on the day of the analysis, and then incubated for 10 h. Next, cells are trypsinized, pelleted, and given a single wash in 400 L of ice-cold PBS containing 1 mM EDTA. Both oxidized and reduced glutathione are quantified in technical triplicates in 120 μL of sample after the cell debris has been pelleted and eliminated. The protein concentration as determined by the Bradford assay is used to normalize the glutathione quantity.
Animal Protocol
NA
NA
References

[1]. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 2016 Jul;12(7):497-503.

[2]. The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity. Cell Rep. 2017 Aug 15;20(7):1692-1704.

[3]. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol. 2018 May;14(5):507-515.

Additional Infomation
FIN56 is a fluorene that is N-9H-fluoren-9-ylidenehydroxylamine substituted by N-cyclohexylsulfonyl groups at positions 2 and 7. It induces ferroptosis via degradation of GPX4 and also binds and activates squalene synthase. It has a role as a ferroptosis inducer and an EC 1.11.1.9 (glutathione peroxidase) inhibitor. It is a member of fluorenes, a ketoxime and a sulfonamide. It is functionally related to a 9-hydroxyiminofluorene-2,7-disulfonamide.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H31N3O5S2
Molecular Weight
517.6607
Exact Mass
517.17
Elemental Analysis
C, 58.01; H, 6.04; N, 8.12; O, 15.45; S, 12.39
CAS #
1083162-61-1
Related CAS #
1083162-61-1
PubChem CID
118986699
Appearance
White to off-white solid powder
LogP
4.9
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
6
Heavy Atom Count
35
Complexity
900
Defined Atom Stereocenter Count
0
InChi Key
JLCFMMIWBSZOIS-UHFFFAOYSA-N
InChi Code
InChI=1S/C25H31N3O5S2/c29-26-25-23-15-19(34(30,31)27-17-7-3-1-4-8-17)11-13-21(23)22-14-12-20(16-24(22)25)35(32,33)28-18-9-5-2-6-10-18/h11-18,27-29H,1-10H2
Chemical Name
2-N,7-N-dicyclohexyl-9-hydroxyiminofluorene-2,7-disulfonamide
Synonyms
FIN-56; FIN56; FIN 56
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~100 mg/mL (~193.2 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (4.83 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (4.83 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (4.83 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.9318 mL 9.6588 mL 19.3177 mL
5 mM 0.3864 mL 1.9318 mL 3.8635 mL
10 mM 0.1932 mL 0.9659 mL 1.9318 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • FIN56

    Modulatory profiling revealed three types of regulated non-apoptotic cell death2016 Jul;12(7):497-503
  • FIN56

    Optimization of CIL56 revealed a potent and selective ferroptosis inducer2016 Jul;12(7):497-503
  • FIN56

    ACC inhibitor prevents GPX4 protein degradation2016 Jul;12(7):497-503

Contact Us