yingweiwo

Fluazinam

Cat No.:V29285 Purity: ≥98%
Fluazinam is a broad spectrum (a wide range) pyridinamine fungus inhibitor.
Fluazinam
Fluazinam Chemical Structure CAS No.: 79622-59-6
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Fluazinam is a broad spectrum (a wide range) pyridinamine fungus inhibitor.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Metabolites AMPA /(4-chloro-N2-[3-chloro-5- (trifluoromethyl)-2-pyridyl]-3-nitro-5-(trifluoromethyl)-1,2-benzenediamine)/, DAPA /(3-chloro-2-(2,6-diamino-3-chloro-alpha,alpha,alpha- trifluoromethyl) pyridine)/, and some related conjugates and hydrolysis products were isolated, identified and characterized from urine, feces and bile of radiolabelled fluazinam-treated rats. Fluazinam was almost completely metabolized by hydroxylation, followed by conjugation. A quantitative sex difference was not observed.
In a metabolism study in rats, only 33-40% of the administered dose of radio labeled fluazinam was absorbed. Most of the administered dose was recovered in the feces (>89%). Unabsorbed parent compound represented most of the identified radioactivity in the feces. Excretion via the urine was minor (<4%). Total biliary radioactivity, however, represented 25-34% of the administered dose, indicating considerable enterohepatic circulation. Analysis of chromatograms indicated that numerous metabolites were present in the bile.
Metabolism / Metabolites
... Fluazinam was almost completely metabolized /in treated rats/ by hydroxylation, followed by conjugation. A quantitative sex difference was not observed.
Toxicity/Toxicokinetics
Toxicity Data
LC50 (rat) = 463 mg/m3
Non-Human Toxicity Values
LD50 Rat oral >5000 mg/kg
LD50 Rabbit dermal >2000 mg/kg
References

[1]. Impact of fluazinam on morphological and physiological characteristics of Sclerotinia sclerotiorum. Pestic Biochem Physiol. 2019 Mar;155:81-89.

Additional Infomation
Fluazinam is a member of the class of aminopyridines that is 2-amino-5-(trifluoromethyl)pyridine in which one of the amino hydrogens is replaced by a 3-chloro-2,6-dinitro-4-(trifluoromethyl)phenyl group. A fungicide used to control grey mould, downy mildew and other fungal pathogens. It has a role as an apoptosis inducer, an allergen, a xenobiotic, an environmental contaminant and an antifungal agrochemical. It is a C-nitro compound, a chloropyridine, an aminopyridine, a secondary amino compound, a member of monochlorobenzenes and a member of (trifluoromethyl)benzenes.
Fluazinam is a broad-spectrum fungicide used in agriculture. It is classed as a diarylamine and more specifically an arylaminopyridine. The mode of action involves the compound being an extremely potent uncoupler of oxidative phosphorylation in mitochondria and also having high reactivity with thiols. It is unique amongst uncouplers in displaying broad-spectrum activity against fungi and also very low toxicity to mammals due to it being rapidly metabolised to a compound without uncoupling activity. Fluazinam is a protectant fungicide, but is neither systemic or curative. It acts by inhibiting the germination of spores and the development of infection structures. Although it has activity against many fungi, it is less potent against rusts and powdery mildew and as such has not been commercialised for use in cereal crops. It is widely used to control late blight (P. infestans) in potato due to its activity against the zoospores of the pathogen which makes it particularly effective at controlling infection of the potato tubers.
Mechanism of Action
Fluazinam is a lipophilic weak acid with strong uncoupling activity on mitochondria in vitro.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C13H4CL2F6N4O4
Molecular Weight
465.09
Exact Mass
463.951
CAS #
79622-59-6
PubChem CID
91731
Appearance
Light yellow to yellow solid powder
Density
1.8±0.1 g/cm3
Boiling Point
376.1±42.0 °C at 760 mmHg
Melting Point
113ºC
Flash Point
181.3±27.9 °C
Vapour Pressure
0.0±0.9 mmHg at 25°C
Index of Refraction
1.571
LogP
8.19
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
12
Rotatable Bond Count
2
Heavy Atom Count
29
Complexity
628
Defined Atom Stereocenter Count
0
InChi Key
UZCGKGPEKUCDTF-UHFFFAOYSA-N
InChi Code
InChI=1S/C13H4Cl2F6N4O4/c14-6-1-4(12(16,17)18)3-22-11(6)23-9-7(24(26)27)2-5(13(19,20)21)8(15)10(9)25(28)29/h1-3H,(H,22,23)
Chemical Name
3-chloro-N-[3-chloro-2,6-dinitro-4-(trifluoromethyl)phenyl]-5-(trifluoromethyl)pyridin-2-amine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~125 mg/mL (~268.77 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.47 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (4.47 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1501 mL 10.7506 mL 21.5012 mL
5 mM 0.4300 mL 2.1501 mL 4.3002 mL
10 mM 0.2150 mL 1.0751 mL 2.1501 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us