yingweiwo

Flunisolide

Alias: NasarelFlunisolideBronalideLunisAeroBidNasalideSynaclyn
Cat No.:V9695 Purity: ≥98%
Flunisolide is a corticosteroid and an orally bioactive glucocorticoid receptor agonist/activator with anti~inflammatory activity.
Flunisolide
Flunisolide Chemical Structure CAS No.: 3385-03-3
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
Other Sizes

Other Forms of Flunisolide:

  • Flunisolide hemihydrate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Flunisolide is a corticosteroid and an orally bioactive glucocorticoid receptor agonist/activator with anti~inflammatory activity. Flunisolide can induce eosinophil apoptosis (apoptosis) and may be utilized in research related to asthma, rhinitis, and inflammation.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Lung fibroblasts that have been isolated from the lung are prevented from activating by flunisolide (0.1–10 μM, 1 hour) [1]. Flunisolide (10 μM, 24 hours) causes sputum eosinophils to undergo apoptosis and decreases the release of MMP-9, TIMP-1, TGF-β, and fibronectin from sputum cells isolated from individuals with mild to moderate asthma [2]. In BEAS-2B cells, flunisolide (0.1–10 µM µM, 24 hours) efficiently suppresses TNF-α-induced ICAM-1 expression as well as GM-CSF and IL-5 production [3]. It has been demonstrated that flunisolide (115 µM, 0–3 hours) is ATP-dependent and can move polarizedly in Calu-3 cells from the apical (ap) to the basolateral (bl) direction [4].
ln Vivo
In silicosis mice, flunisolide (intranasal treatment, 0.3–10 µg/mouse, daily, commencing on days 21–27) enhances the rate of silicon particle clearance in the lungs while simultaneously inhibiting lung inflammation, fibrosis, and airway hyperresponsiveness [1]. The intranasal administration of flunisolide (0.3–10 µg/mouse, daily, days 21–27) prevents the formation of macrophages and myofibroblasts in lung tissue caused by silica [1].
Cell Assay
Apoptosis analysis [2]
Cell Types: eosinophils
Tested Concentrations: 10 μM
Incubation Duration: 24 h
Experimental Results: Induced apoptosis of sputum eosinophils.
Animal Protocol
Animal/Disease Models: Male Swiss-Wechsler mouse (intranasal instillation, crystalline silica, 10 mg/50 µL, particle size 0.5-10 µm) [1]
Doses: 0.3-10 µg/mouse daily, day 21 -27-day intranasal administration
Experimental Results: diminished granulomatous reactions, collagen deposition associated with granuloma formation induced by silica particles. Reduce the number of F4/80 and α-SMA positive cells.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Absorbed rapidly
Metabolism / Metabolites
Primarily hepatic, converted to the S beta-OH metabolite.
Biological Half-Life
1.8 hours
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Although not measured, the amounts of inhaled corticosteroids absorbed into the maternal bloodstream and excreted into breastmilk are probably too small to affect a breastfed infant. Expert opinion considers inhaled, nasal and oral corticosteroids acceptable to use during breastfeeding.
◉ Effects in Breastfed Infants
None reported with any corticosteroid.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Approximately 40% after oral inhalation
References

[1]. Intranasal Flunisolide Suppresses Pathological Alterations Caused by Silica Particles in the Lungs of Mice. Front Endocrinol (Lausanne). 2020 Jun 17;11:388.

[2]. In vitro effects of flunisolide on MMP-9, TIMP-1, fibronectin, TGF-beta1 release and apoptosis in sputum cells freshly isolated from mild to moderate asthmatics. Allergy. 2004 Sep;59(9):927-32.

[3]. Modulation by flunisolide of tumor necrosis factor-alpha-induced stimulation of airway epithelial cell activities related to eosinophil inflammation. J Asthma. 2010 May;47(4):381-7.

[4]. Evidence of P-glycoprotein mediated apical to basolateral transport of flunisolide in human broncho-tracheal epithelial cells (Calu-3). Br J Pharmacol. 2001 Dec;134(7):1555-63.

Additional Infomation
Flunisolide can cause developmental toxicity and female reproductive toxicity according to state or federal government labeling requirements.
Flunisolide is a fluorinated steroid, a cyclic ketal, a 20-oxo steroid, a 21-hydroxy steroid, an 11beta-hydroxy steroid, a 3-oxo-Delta(1),Delta(4)-steroid and a primary alpha-hydroxy ketone. It has a role as an immunosuppressive agent, an anti-inflammatory drug and an anti-asthmatic drug.
Flunisolide (marketed as AeroBid, Nasalide, Nasarel) is a corticosteroid with anti-inflammatory actions. It is often prescribed as treatment for allergic rhinitis and its principle mechanism of action involves activation of glucocorticoid receptors.
Flunisolide anhydrous is a Corticosteroid. The mechanism of action of flunisolide anhydrous is as a Corticosteroid Hormone Receptor Agonist.
Flunisolide is a synthetic corticosteroid with antiinflammatory and antiallergic properties. Flunisolide is a glucocorticoid receptor agonist that binds to cytoplasmic glucocorticoid receptors and subsequently translocates to the nucleus where it initiates the transcription of glucocorticoid-responsive genes such as lipocortins. Lipocortins inhibit phospholipase A2, thereby blocking the release of arachidonic acid from membrane phospholipids and preventing the synthesis of prostaglandins and leukotrienes, both are potent mediators of inflammation.
Drug Indication
For the maintenance treatment of asthma as a prophylactic therapy.
FDA Label
Mechanism of Action
Flunisolide is a glucocorticoid receptor agonist. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Flunisolide binds to plasma transcortin, and it becomes active when it is not bound to transcortin.
Pharmacodynamics
Flunisolide is a synthetic corticosteroid. It is administered either as an oral metered-dose inhaler for the treatment of asthma or as a nasal spray for treating allergic rhinitis. Corticosteroids are naturally occurring hormones that prevent or suppress inflammation and immune responses. When given as an intranasal spray, flunisolide reduces watery nasal discharge (rhinorrhea), nasal congestion, postnasal drip, sneezing, and itching oat the back of the throat that are common allergic symptoms.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H31FO6
Molecular Weight
434.4977
Exact Mass
434.21
CAS #
3385-03-3
Related CAS #
Flunisolide hemihydrate;77326-96-6;Flunisolide-d6
PubChem CID
82153
Appearance
White to off-white solid powder
Density
1.33g/cm3
Boiling Point
581.8ºC at 760mmHg
Melting Point
237-240°C (dec.)
Flash Point
305.7ºC
LogP
2.274
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
2
Heavy Atom Count
31
Complexity
910
Defined Atom Stereocenter Count
9
SMILES
C[C@]12C[C@@H]([C@H]3[C@H]([C@@H]1C[C@@H]4[C@]2(OC(O4)(C)C)C(=O)CO)C[C@@H](C5=CC(=O)C=C[C@]35C)F)O
InChi Key
XSFJVAJPIHIPKU-XWCQMRHXSA-N
InChi Code
InChI=1S/C24H31FO6/c1-21(2)30-19-9-14-13-8-16(25)15-7-12(27)5-6-22(15,3)20(13)17(28)10-23(14,4)24(19,31-21)18(29)11-26/h5-7,13-14,16-17,19-20,26,28H,8-11H2,1-4H3/t13-,14-,16-,17-,19+,20+,22-,23-,24+/m0/s1
Chemical Name
(1S,2S,4R,8S,9S,11S,12S,13R,19S)-19-fluoro-11-hydroxy-8-(2-hydroxyacetyl)-6,6,9,13-tetramethyl-5,7-dioxapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one
Synonyms
NasarelFlunisolideBronalideLunisAeroBidNasalideSynaclyn
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~125 mg/mL (~287.69 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.79 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (4.79 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (4.79 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3015 mL 11.5075 mL 23.0150 mL
5 mM 0.4603 mL 2.3015 mL 4.6030 mL
10 mM 0.2301 mL 1.1507 mL 2.3015 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02404103 COMPLETEDWITH RESULTS Drug: Flunisolide HFA Childhood Asthma University of Louisville 2015-03 Not Applicable
NCT00203684 UNKNOWN STATUS Drug: Flunisolide-HFA Asthma
Distal Lung Inflammation
University of California, Los Angeles Phase 1
Phase 2
NCT00346775 COMPLETEDWITH RESULTS Drug: Beclomethasone dipropionate
Drug: Flunisolide
Rhinitis, Allergic, Perennial GlaxoSmithKline 2006-05-01 Phase 3
NCT01347060 COMPLETEDWITH RESULTS Drug: fluticasone propionate/salmeterol
xinafoate combination
Drug: inhaled corticosteroids
Asthma GlaxoSmithKline 2009-07
NCT02515318 UNKNOWN STATUS Other: Physiotherapy program
Drug: Medical standard treatment
COPD Universidad de Granada 2015-09 Not Applicable
Biological Data
  • Effect of flunisolide on granulomatous and fibrotic response caused by silica particle instillation. Lung sections were obtained from sham-challenged mice (negative control) (A/D), silica-challenged mice treated with vehicle (positive control) (B/E) and silica-challenged mice treated with flunisolide (10 μg/mouse, intranasal, daily from days 21–27) (C/F) (H,E/Picrus sirius staining) on day 28. Quantitative evaluation of the area occupied by granuloma and lung collagen content from silicotic mice treated or not with flunisolide are seen in (G) and (H), respectively. Scale bar = 200 μm. Values represent mean ± SEM from 6 animals per group. Statistical analysis was done with one-way ANOVA followed by Newman-Keuls-Student test. +P < 0.05 as compared to saline-challenged animals. *P < 0.05 as compared to silica-challenged animals.[1].Tatiana Paula Teixeira Ferreira, et al. Intranasal Flunisolide Suppresses Pathological Alterations Caused by Silica Particles in the Lungs of Mice. Front Endocrinol (Lausanne). 2020 Jun 17;11:388.
  • Effect of flunisolide on generation of inflammatory mediators caused by silica particle instillation. Chemokines MIP-1α/CCL3 (A), MIP-2/CXCL2 (B) and cytokines TGF-β (C) and TNF-α (D) were measured in the lung tissue obtained from sham-challenged mice (negative control), silica-challenged mice treated with vehicle (positive control) and silica-challenged mice treated with flunisolide (0.3–10 μg/mouse, intranasal, daily from days 21–27) on day 28. Values represent mean ± SEM from 6 animals per group. Statistical analysis was done with one-way ANOVA followed by Newman-Keuls-Student test. +P < 0.05 as compared to saline-challenged animals. *P < 0.05 as compared to silica-challenged animals.[1].Tatiana Paula Teixeira Ferreira, et al. Intranasal Flunisolide Suppresses Pathological Alterations Caused by Silica Particles in the Lungs of Mice. Front Endocrinol (Lausanne). 2020 Jun 17;11:388.
  • Effect of flunisolide on airway hyper-reactivity caused by silica particle instillation. Airway resistance (A) and pulmonary elastance (B) were evaluated in the presence of increasing concentrations of methacholine (3–81 mg/mL) in sham-challenged mice (negative control), silica-challenged mice treated with vehicle (positive control) and silica-challenged mice treated with flunisolide (10 μg/mouse, intranasal, daily from days 21–27) on day 28. Values represent mean ± SEM from 6 animals per group. Statistical analysis was done with one-way ANOVA followed by Newman-Keuls-Student test. +P < 0.05 as compared to saline-challenged animals. *P < 0.05 as compared to silica-challenged animals.[1].Tatiana Paula Teixeira Ferreira, et al. Intranasal Flunisolide Suppresses Pathological Alterations Caused by Silica Particles in the Lungs of Mice. Front Endocrinol (Lausanne). 2020 Jun 17;11:388.
Contact Us