yingweiwo

Flupentixol dihydrochloride

Cat No.:V31265 Purity: ≥98%
Flupentixol diHCl is an orally bioactive D1/D2 dopamine receptor blocker (antagonist) and novel PI3K inhibitor (PI3Kα IC50=127 nM).
Flupentixol dihydrochloride
Flupentixol dihydrochloride Chemical Structure CAS No.: 2413-38-9
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
100mg
Other Sizes

Other Forms of Flupentixol dihydrochloride:

  • cis-(Z)-Flupentixol dihydrochloride
  • Flupenthixol
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Flupentixol diHCl is an orally bioactive D1/D2 dopamine receptor blocker (antagonist) and novel PI3K inhibitor (PI3Kα IC50=127 nM). Flupentixol diHCl has antiproliferation activity against cancer/tumor cells and causes apoptosis. Flupentixol diHCl is also utilized in the research into schizophrenia, anxiety, and depression.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Treatment with flupentixol (2.5-40 μM; 72 h) dose-dependently reduces lung cancer cell viability [3]. To induce apoptosis in lung cancer cells, administer flupentixol (2.5-40 μM) for 24 hours [3]. Bcl-2 expression levels and p-AKT are inhibited by flupentixol (2.5–15 μM; 24 hours) [3].
ln Vivo
Flupentixol (intragastric injection; 40 mg/kg; once daily; 21 days) suppresses the formation of A549 xenograft tumors in nude mice [3].
Cell Assay
Cell Viability Assay[3]
Cell Types: A549, H661, SK-SEM-1 and NCAL-H520 Cell
Tested Concentrations: 2.5, 5, 10, 20 or 40 μM
Incubation Duration: 72 hrs (hours)
Experimental Results: Shows IC50 of 5.708 μM A549 and H661 Cells were 6.374 μM and 6.374 μM respectively.

Apoptosis analysis[3]
Cell Types: A549 and H661 Cell
Tested Concentrations: 5, 10, 20 and 40 μM
Incubation Duration: 24 hrs (hours)
Experimental Results: The percentage of early apoptotic cells increased in A549 and H661 compared to the negative control (p < 0.05). Induces PARP and caspase-3 cleavage in a dose-dependent manner.

Western Blot Analysis [3]
Cell Types: A549 and H661 Cell
Tested Concentrations: 2.5, 5, 10 and 15 μM
Incubation Duration: 24 hrs (hours)
Experimental Results: diminished AKT phosphorylation levels and diminished Bcl-2 expression levels in a dose-dependent manner.
Animal Protocol
Animal/Disease Models: BALB/C nude mice injected with A549 cells [3]
Doses: 40 mg/kg
Route of Administration: gavage; 40 mg/kg; one time/day; 21 days
Experimental Results: Compared with the vehicle control, the tumor volume diminished ( p<0.05), tumor weight diminished by 64.1% (p<0.05).
References
[1]. Yonar D, et al. Effect of cis-(Z)-flupentixol on DPPC membranes in the presence and absence of cholesterol. Chem Phys Lipids. 2016 Jun;198:61-71.
[2]. Ruhrmann S, et al. Efficacy of flupentixol and risperidone in chronic schizophrenia with predominantly negative symptoms. Prog Neuropsychopharmacol Biol Psychiatry. 2007 Jun 30;31(5):1012-22.
[3]. Chao Dong, et al. The antipsychotic agent flupentixol is a new PI3K inhibitor and potential anticancer drug for lung cancer. Int J Biol Sci. 2019 Jun 2;15(7):1523-1532.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H25F3N2OS.2(HCL)
Molecular Weight
507.44
CAS #
2413-38-9
Related CAS #
cis-(Z)-Flupentixol dihydrochloride;51529-01-2;Flupentixol;2709-56-0
Appearance
Typically exists as solids (or liquids in special cases) at room temperature
SMILES
OCCN1CCN(CC/C=C2C3=C(SC4=C/2C=CC=C4)C=CC(C(F)(F)F)=C3)CC1.[H]Cl.[H]Cl
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~100 mg/mL (~197.07 mM)
DMSO : ~33.33 mg/mL (~65.68 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.93 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (4.93 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (4.93 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 50 mg/mL (98.53 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.9707 mL 9.8534 mL 19.7068 mL
5 mM 0.3941 mL 1.9707 mL 3.9414 mL
10 mM 0.1971 mL 0.9853 mL 1.9707 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us