yingweiwo

FOSAPREPITANT

Alias: L-758298; L 758298; L758298; MK0517; MK 0517; Ivemend; fosaprepitantum; UNII-6L8OF9XRDC; 6L8OF9XRDC; L 758298; L-758298; MK-0517
Cat No.:V4399 Purity: ≥98%
Fosaprepitant (also known as L-758298; MK0517) is a neurokinin-1 receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting.
FOSAPREPITANT
FOSAPREPITANT Chemical Structure CAS No.: 172673-20-0
Product category: Neurokinin Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of FOSAPREPITANT:

  • FOSAPREPITANT DIMEGLUMINE
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Fosaprepitant (also known as L-758298; MK0517) is a neurokinin-1 receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. Fosaprepitant is injected intravenously and used as an antiemetic medication. Merck & Co. developed fosaprepitant, which was authorized as an Aprepitant prodrug. It helps to avoid both acute and delayed nausea and vomiting brought on by chemotherapy. Prepitant, the active moiety, is a substrate, inducer, and inhibitor of CYP3A4, while fosaprepitant is a weak inhibitor of CYP3A4.

Biological Activity I Assay Protocols (From Reference)
Targets
Neurokinin-1 receptor
ln Vitro
Fosaprepitant (1 mg/mL in 0.9 % sodium chloride injection solution) was combined in binary or tertiary fashion with therapeutic-dose preparations of a 5-HT3 antagonist (ondansetron, granisetron, palonosetron, or tropisetron) and/or a corticosteroid (dexamethasone sodium phosphate or methylprednisolone sodium succinate). For diluent compatibility assessment, fosaprepitant was also prepared 1 mg/mL in 0.9 % sodium chloride injection solution, water for injection, or 5 % dextrose injection solution. After 24-h storage under ambient conditions, samples were assayed for degradation[3].
ln Vivo
Fosaprepitant (30 mg/kg; i.p.; daily; for 7 days) reduces morphine tolerance and heightens the antinociceptive impact in rats[1].
Animal Protocol
Sprague-Dawley rats
30 mg/kg
Intraperitoneal injection, daily, for 7 days
Sprague-Dawley rats were injected with morphine (10 mg/kg twice daily) and/or fosaprepitant (30 mg/kg once daily) for 7 days. Pain threshold was assessed by the hot plate test. Expression of SP and calcitonin gene-related peptide (CGRP) in the spinal cords of these rats was evaluated by immunohistochemistry.[2]
Fosaprepitant (also known as MK-0517 and L-758,298) is a water-soluble phosphoryl prodrug for aprepitant, which, when administered intravenously, is converted to aprepitant within 30 min of intravenous administration via the action of ubiquitous phosphatases. Owing to the rapid conversion of fosaprepitant to the active form (aprepitant), fosaprepitant 115 mg provided the same aprepitant exposure in terms of AUC as aprepitant 12 mg orally, and fosaprepitant is expected to provide a correspondingly similar antiemetic effect as aprepitant. Clinical studies have suggested that fosaprepitant could be appropriate as an intravenous alternative to the aprepitant oral capsule. In a study in healthy subjects, fosaprepitant 115 mg was generally well tolerated at a final drug concentration of 1 mg/ml, and fosaprepitant 115 mg was AUC bioequivalent to aprepitant 125 mg. Fosaprepitant in the dose of 115 mg has been approved by the US FDA, the EU and the Australian authorities on day 1 of a 3-day oral aprepitant regimen, with oral aprepitant administered on days 2 and 3. Fosaprepitant may be a useful parenteral alternative to oral aprepitant. Further study is needed to clarify the utility of fosaprepitant in the prevention of CINV and to clarify optimal dosing regimens that may be appropriate substitutes for oral aprepitant[2].
References

[1]. Role of fosaprepitant, a neurokinin Type 1 receptor antagonist, in morphine-induced antinociception in rats. Indian J Pharmacol. 2016 Jul-Aug; 48(4): 394-398.

[2]. Fosaprepitant: a neurokinin-1 receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. Expert Rev Anticancer Ther . 2008 Nov;8(11):1733-42.
[3]. Compatibility of intravenous fosaprepitant with intravenous 5-HT3 antagonists and corticosteroids. Cancer Chemother Pharmacol . 2013 Sep;72(3):509-13.
Additional Infomation
Fosaprepitant is a morpholine derivative that is the (1R)-1-[3,5-bis(trifluoromethyl)phenyl]ethyl ether of (3-{[(2R,3S)-3-(4-fluorophenyl)-2-hydroxymorpholin-4-yl]methyl}-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)phosphonic acid. It has a role as an antiemetic, a neurokinin-1 receptor antagonist and a prodrug. It is a member of morpholines, a member of triazoles, a cyclic acetal, a phosphoramide and a member of (trifluoromethyl)benzenes. It is a conjugate acid of a fosaprepitant(2-). ChEBI
Fosaprepitant is an intravenously administered antiemetic drug. It is a prodrug of Aprepitant. It aids in the prevention of acute and delayed nausea and vomiting associated with chemotherapy treatment. DrugBank
Fosaprepitant is a Substance P/Neurokinin-1 Receptor Antagonist. The mechanism of action of fosaprepitant is as a Neurokinin 1 Antagonist. FDA Pharm Classes
Fosaprepitant is a water-soluble, N-phosphorylated prodrug of the substance P (SP; neurokinin 1 (NK1)) antagonist aprepitant, with antiemetic activity. Upon intravenous administration and rapid conversion to aprepitant, this agent selectively binds to and blocks the human substance P receptors in the central nervous system (CNS). This inhibits receptor binding of the endogenous substance P and prevents substance P-induced emesis.
View More

Fosaprepitant is indicated in adult and pediatric patients ≥6 months of age, in combination with other antiemetic agents, for the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of highly emetogenic cancer chemotherapy, including high-dose [cisplatin]. It is also indicated for the treatment of delayed nausea and vomiting with initial and repeat courses of moderately emetogenic cancer chemotherapy.
Prevention of nausea and vomiting associated with highly and moderately emetogenic cancer chemotherapy in adults and paediatric patients aged 6 months and older. Ivemend 150 mg is given as part of a combination therapy.
Fosaprepitant is a prodrug of Aprepitant. Once biologically activated, the drug acts as a substance P/neurokinin 1 (NK1) receptor antagonist which, in combination with other antiemetic agents, is indicated for the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of highly emetogenic cancer chemotherapy. Aprepitant is a selective high-affinity antagonist of human substance P/neurokinin 1 (NK1) receptors. Aprepitant has little or no affinity for serotonin (5-HT3), dopamine, and corticosteroid receptors, the targets of existing therapies for chemotherapy-induced nausea and vomiting (CI NV).


Route of Elimination: Aprepitant is eliminated primarily by metabolism; aprepitant is not renally excreted. Aprepitant is excreted in the milk of rats. It is not known whether this drug is excreted in human milk.
Metabolism / Metabolites: Aprepitant is metabolized primarily by CYP3A4 with minor metabolism by CYP1A2 and CYP2C19. Seven metabolites of aprepitant, which are only weakly active, have been identified in human plasma.
Biological Half-Life: 9-13 hours
Aprepitant has been shown in animal models to inhibit emesis induced by cytotoxic chemotherapeutic agents, such as cisplatin, via central actions. Animal and human Positron Emission Tomography (PET) studies with Aprepitant have shown that it crosses the blood brain barrier and occupies brain NK1 receptors. Animal and human studies show that Aprepitant augments the antiemetic activity of the 5-HT3-receptor antagonist ondansetron and the corticosteroid ethasone and inhibits both the acute and delayed phases of cisplatin induced emesis. In summary, the active form of fosaprepitant is as an NK1 antagonist which is because it blocks signals given off by NK1 receptors. This therefore decreases the likelihood of vomiting in patients experiencing.
Chemotherapy-induced nausea and vomiting (CINV) is a distressing and common adverse event associated with cancer treatment. Updated antiemetic guidelines were published in 2008 by the National Comprehensive Cancer Network and, in 2006, by the American Society of Clinical Oncology, which have included the use of the new and more effective antiemetic agents 5-hydroxytryptamine-3 (5-HT(3)) receptor antagonist and neurokinin (NK)-1 receptor antagonist. Aprepitant is a selective NK-1 receptor antagonist approved as part of combination therapy with a corticosteroid and a 5-HT(3) receptor antagonist for the prevention of acute and delayed CINV in patients receiving moderately and highly emetogenic chemotherapy. Fosaprepitant (also known as MK-0517 and L-758,298) is a water-soluble phosphoryl prodrug for aprepitant, which, when administered intravenously, is converted to aprepitant within 30 min of intravenous administration via the action of ubiquitous phosphatases. Owing to the rapid conversion of fosaprepitant to the active form (aprepitant), fosaprepitant 115 mg provided the same aprepitant exposure in terms of AUC as aprepitant 12 mg orally, and fosaprepitant is expected to provide a correspondingly similar antiemetic effect as aprepitant. Clinical studies have suggested that fosaprepitant could be appropriate as an intravenous alternative to the aprepitant oral capsule. In a study in healthy subjects, fosaprepitant 115 mg was generally well tolerated at a final drug concentration of 1 mg/ml, and fosaprepitant 115 mg was AUC bioequivalent to aprepitant 125 mg. Fosaprepitant in the dose of 115 mg has been approved by the US FDA, the EU and the Australian authorities on day 1 of a 3-day oral aprepitant regimen, with oral aprepitant administered on days 2 and 3. Fosaprepitant may be a useful parenteral alternative to oral aprepitant. Further study is needed to clarify the utility of fosaprepitant in the prevention of CINV and to clarify optimal dosing regimens that may be appropriate substitutes for oral aprepitant.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H22F7N4O6P
Molecular Weight
614.41
Exact Mass
614.12
Elemental Analysis
C, 44.96; H, 3.61; F, 21.64; N, 9.12; O, 15.62; P, 5.04
CAS #
172673-20-0
Related CAS #
Fosaprepitant dimeglumine; 265121-04-8
PubChem CID
135413538
Appearance
Solid powder
Density
1.7±0.1 g/cm3
Boiling Point
588.9ºC at 760 mmHg
Flash Point
310ºC
Vapour Pressure
1.03E-14mmHg at 25°C
Index of Refraction
1.59
LogP
2.14
tPSA
139.72
SMILES
C[C@H](C1=CC(=CC(=C1)C(F)(F)F)C(F)(F)F)O[C@@H]2[C@@H](N(CCO2)CC3=NN(C(=O)N3)P(=O)(O)O)C4=CC=C(C=C4)F
InChi Key
BARDROPHSZEBKC-OITMNORJSA-N
InChi Code
InChI=1S/C23H22F7N4O6P/c1-12(14-8-15(22(25,26)27)10-16(9-14)23(28,29)30)40-20-19(13-2-4-17(24)5-3-13)33(6-7-39-20)11-18-31-21(35)34(32-18)41(36,37)38/h2-5,8-10,12,19-20H,6-7,11H2,1H3,(H,31,32,35)(H2,36,37,38)/t12-,19+,20-/m1/s1
Chemical Name
[3-[[(2R,3S)-2-[(1R)-1-[3,5-bis(trifluoromethyl)phenyl]ethoxy]-3-(4-fluorophenyl)morpholin-4-yl]methyl]-5-oxo-4H-1,2,4-triazol-1-yl]phosphonic acid
Synonyms
L-758298; L 758298; L758298; MK0517; MK 0517; Ivemend; fosaprepitantum; UNII-6L8OF9XRDC; 6L8OF9XRDC; L 758298; L-758298; MK-0517
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.6276 mL 8.1379 mL 16.2758 mL
5 mM 0.3255 mL 1.6276 mL 3.2552 mL
10 mM 0.1628 mL 0.8138 mL 1.6276 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT05755659 Recruiting Drug: Fosaprepitant
Dimeglumine for Injection
Neoplasms Xijing Hospital July 15, 2022 Not Applicable
NCT05242874 Recruiting Drug: Fosaprepitant , Tropisetron
and Olanzapine
Drug: Fosaprepitant , Tropisetron,
Dexamethasone and Olanzapine
Chemotherapy-induced Nausea
and Vomiting
Henan Cancer Hospital January 1, 2022 Phase 3
NCT05244577 Recruiting Drug: Olanzapine Tablets
Drug: Placebo
Olanzapine
CINV
Cisplatin
Shi Yanxia January 18, 2022 Phase 3
NCT05564286 Recruiting Drug: Fosaprepitant
Drug: tropisetron
Drug: Dexamethasone
Cervical Cancer
Antiemetic
Nasopharyngeal Cancer
Shantou University Medical
College
July 1, 2021 Phase 3
NCT04636632 Completed Drug: fosaprepitant Nasopharyngeal Carcinoma Sun Yat-sen University November 24, 2020 Phase 1
Biological Data
  • Quantitative image analysis of the expression of substance P and calcitonin gene-related peptide (CGRP) shows that morphine + fosaprepitant treatment led to higher substance P expression compared to all other groups including the morphine treated group. ≠≠≠P < 0.001. Fosa represents fosaprepitant. Indian J Pharmacol . 2016 Jul-Aug;48(4):394-398.
Contact Us