yingweiwo

Fosfomycin calcium (MK-0955)

Alias: Calcium fosfomycin; AN-8336; CS-4631; AN8336; CS4631; AN 8336; CS 4631; Phosphomycin Calcium
Cat No.:V18625 Purity: ≥98%
Fosfomycin calcium (MK-0955 calcium) is apotent,blood-brain barrier penetrantphosphoenolpyruvate analogproduced by Streptomyces and a synthetic broad-spectrum antibiotic with antimicrobial and bactericidal properties.
Fosfomycin calcium (MK-0955)
Fosfomycin calcium (MK-0955) Chemical Structure CAS No.: 26016-98-8
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10g
25g
50g
100g
Other Sizes

Other Forms of Fosfomycin calcium (MK-0955):

  • Fosfomycin sodium
  • Fosfomycin Tromethamine (MK-0955)
  • Fosfomycin
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Fosfomycin calcium (MK-0955 calcium) is a potent, blood-brain barrier penetrant phosphoenolpyruvate analog produced by Streptomyces and a synthetic broad-spectrum antibiotic with antimicrobial and bactericidal properties. Fosfomycin binds to and inactivates the enzyme enolpyruvate transferase. This leads to an irreversible blockage of the condensation of uridine diphosphate-N-acetylglucosamine with p-enolpyruvate, which is one of the first steps of bacterial cell wall synthesis.

Biological Activity I Assay Protocols (From Reference)
Targets
Bacterial cell wall synthesis
ln Vitro
The antibacterial agent found in epoxy is fosfomycin calcium. In contrast to other antibacterial agents, its mechanism of action involves impeding the initial stage of cell wall synthesis [1].
With an inhibition rate of 90%, fosfomycin calcium exhibits bactericidal activity against a range of gram-positive and gram-negative pathogens, including broad-spectrum producing β-Bacteria of lactamase and carbapenemase[1].
Research on infections of the central nervous system, soft tissues, bone, lungs, and abscesses can be conducted using fosfomycin calcium, which exhibits significant tissue penetration[2].
ln Vivo
The protective effect of fosfomycin calcium (80 mg/kg; i.v.-i.v. or i.v.-p.o.) against the nephrotoxicity of double beckacin is demonstrated, and administration routes do not alter this effect[3].
Enzyme Assay
Fosfomycin is a bactericidal antibiotic agent. It inhibits an enzyme-catalyzed reaction in the first step of the synthesis of the bacterial cell wall. Fosfomycin interferes with the first cytoplasmic step of bacterial cell wall biosynthesis, the formation of the peptidoglycan precursor UDP N-acetylmuramic acid (UDP-MurNAc). Specifically, the enzyme UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is involved in peptidoglycan biosynthesis by catalyzing the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 3′-hydroxyl group of UDP-N-acetylglucosamine (UNAG). Fosfomycin covalently binds to the thiol group of a cysteine (position 115 in Escherichia coli numbering; target Cys115) in the active site of MurA and consequently inactivates it. This inhibitory action takes place at an earlier step than the action of β-lactams or glycopeptides [1].
Cell Assay
Fosfomycin exerts immunomodulatory effects by altering lymphocyte, monocyte and neutrophil function. It affects the acute inflammatory cytokine response in vitro and in vivo. It suppresses production of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-1α and increases production of IL-10, while contradictory data have been published regarding IL-6. On the other hand, concentrations of TNF-α, IL-1β, and IL-6 expressed as protein and mRNA were almost identical with and without fosfomycin in healthy volunteers. Fosfomycin suppresses IL-2 production from T cells, the production of leukotriene B4 (LTB4) from neutrophils, and the expression of IL-8 mRNA by LTB4 from monocytes. Fosfomycin also exhibits an immunomodulatory effect on B-cell activation. Fosfomycin enhances neutrophil phagocytic killing of invading pathogens, even in patients on chronic hemodialysis and renal transplantation). Fosfomycin resulted in enhanced bactericidal ability of neutrophils compared to other antimicrobials. The clinical relevance of the aforementioned actions remains to be elucidated [1].
Animal Protocol
Animal Model: Fischer 344 rats[3]
Dosage: 320 mg/kg
Administration: Intramuscular injection, five schedules: one hour, half an hour before dibekacin, simultaneously, half an hour after, and one hour after; eleven days
Result: Dibecacin (40 mg/kg)-induced reduction in polyuria, proteinuria, enzymes, and cytosine, followed by the prior treatment.
References

[1]. Fosfomycin. Clin Microbiol Rev. 2016 Apr. 29(2):321-47.

[2]. Fosfomycin: Pharmacological, Clinical and Future Perspectives. Antibiotics (Basel). 2017 Oct 31;6(4). pii: E24.

[3]. Protective effect of fosfomycin on the experimental nephrotoxicity induced by dibekacin. J Pharmacobiodyn. 1982 Sep. 5(9):659-69.

[4]. Mode of protective action of fosfomycin against dibekacin-induced nephrotoxicity in the dehydrated rats. J Pharmacobiodyn. 1982 Dec. 5(12):941-50.

[5]. Reffert JL, Smith WJ. Fosfomycin for the treatment of resistant gram-negative bacterial infections. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2014 Aug;34(8):845-57. doi: 10.1002/phar.1434. Epub 2014 Apr 30. Review. PubMed PMID: 24782335.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C3H5CAO4P
Molecular Weight
176.12
Exact Mass
175.95513
Elemental Analysis
C, 20.46; H, 2.86; Ca, 22.76; O, 36.34; P, 17.59
CAS #
26016-98-8
Related CAS #
Fosfomycin sodium;26016-99-9;Fosfomycin tromethamine;78964-85-9;Fosfomycin;23155-02-4
Appearance
White to off-white solid powder
LogP
0.78
tPSA
85.53
SMILES
C[C@H]1[C@@H](P(O)([O-])=O)O1.CC2C(P(O)([O-])=O)O2.[Ca+2]
InChi Key
DFBPVXQYQJJUMW-JSTPYPERSA-L
InChi Code
InChI=1S/2C3H7O4P.Ca/c2*1-2-3(7-2)8(4,5)6/h2*2-3H,1H3,(H2,4,5,6)/q+2/p-2/t2-,3+/m0../s1
Chemical Name
calcium hydrogen ((2R,3S)-3-methyloxiran-2-yl)phosphonate hydrogen (3-methyloxiran-2-yl)phosphonate
Synonyms
Calcium fosfomycin; AN-8336; CS-4631; AN8336; CS4631; AN 8336; CS 4631; Phosphomycin Calcium
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~50 mg/mL (~283.90 mM )
DMSO : < 1 mg/mL
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.6779 mL 28.3897 mL 56.7795 mL
5 mM 1.1356 mL 5.6779 mL 11.3559 mL
10 mM 0.5678 mL 2.8390 mL 5.6779 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Flow-chart depicting the systematic search process and articles included. [2]. Fosfomycin: Pharmacological, Clinical and Future Perspectives. Antibiotics (Basel). 2017 Oct 31;6(4). pii: E24.
  • Chemical structures of fosfomycin calcium (A), fosfomycin disodium (B) and fosfomycin tromethamine (C). [2]. Fosfomycin: Pharmacological, Clinical and Future Perspectives. Antibiotics (Basel). 2017 Oct 31;6(4). pii: E24.
  • Mechanism of action of fosfomycin (“F”).[2]. Fosfomycin: Pharmacological, Clinical and Future Perspectives. Antibiotics (Basel). 2017 Oct 31;6(4). pii: E24.
Contact Us