yingweiwo

Ganirelix acetate

Cat No.:V34644 Purity: ≥98%
Ganirelix acetate is a peptide compound.
Ganirelix acetate
Ganirelix acetate Chemical Structure CAS No.: 123246-29-7
Product category: Peptides
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

Ganirelix acetate is a peptide compound.

Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Ganirelix is rapidly absorbed following subcutaneous administration with a mean absolute bioavailability of approximately 91%. It has a Tmax ranging from one to two hours. Ganirelix reaches steady-state serum concentrations after three days of administration.
Following single-dose intravenous administration of radiolabeled ganirelix to healthy female volunteers, Ganirelix is the major compound present in the plasma (50–70% of total radioactivity in the plasma) up to 4 hours and urine (17.1–18.4% of administered dose) up to 24 hours. Ganirelix is not found in the feces. On average, 97.2% of the total radiolabeled ganirelix dose is recovered in the feces and urine (75.1% and 22.1%, respectively) over 288 h following intravenous single dose administration of 1 mg [14C]-ganirelix. Urinary excretion is virtually complete in 24 h, whereas fecal excretion starts to plateau 192 h after dosing.
The mean (SD) volume of distribution of ganirelix in healthy females following subcutaneous administration of a single 250-mcg dose is 43.7 (11.4) L.
Clearance following subcutaneous administration of a single 250-mcg dose is approximately 2.4 L/h.
Metabolism / Metabolites
The metabolites are small peptide fragments formed by enzymatic hydrolysis of ganirelix at restricted sites. The 1–4 peptide and 1–6 peptide of ganirelix are the primary metabolites observed in the feces.
Biological Half-Life
The elimination half-life (t½) following subcutaneous administration of a single 250-mcg dose is approximately 13 hours.
Toxicity/Toxicokinetics
Protein Binding
_In vitro_ protein binding to human plasma is 81.9%.
Additional Infomation
Ganirelix is a polypeptide.
Ganirelix is a synthetic decapeptide and a competitive gonadotropin-releasing hormone (GnRH) antagonist. Derived from endogenous GnRH, ganirelix has amino acid substitutions. Ganirelix is indicated for controlled ovarian hyperstimulation in assisted reproduction techniques. The first case of pregnancy achieved after the use of ganirelix in an assisted reproduction program was reported in 1998. Ganirelix was first approved by the FDA on July 29, 1999.
Ganirelix is a Gonadotropin Releasing Hormone Receptor Antagonist. The mechanism of action of ganirelix is as a Gonadotropin Releasing Hormone Receptor Antagonist. The physiologic effect of ganirelix is by means of Decreased GnRH Secretion.
See also: Ganirelix Acetate (has salt form).
Drug Indication
Ganirelix is indicated for the inhibition of premature luteinizing hormone (LH) surges in women undergoing controlled ovarian hyperstimulation for assisted reproduction techniques (ART).
The prevention of premature luteinising-hormone surges in women undergoing controlled ovarian hyperstimulation for assisted reproduction techniques. In clinical studies, Orgalutran was used with recombinant human follicle-stimulating hormone or corifollitropin alfa, the sustained follicle stimulant.
Prevention of premature luteinising hormone (LH) surges in women undergoing controlled ovarian hyperstimulation (COH) for assisted reproduction techniques (ART).
Mechanism of Action
Gonadotropin-releasing hormone (GnRH) is a hypothalamus-derived releasing hormone responsible for the synthesis and release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the anterior pituitary. At midcycle, a large increase in GnRH release results in an LH surge, which leads to several physiologic actions such as ovulation, resumption of meiosis in the oocyte, and luteinization. Luteinization results in a rise in serum progesterone with an accompanying decrease in estradiol levels. Controlled ovarian hyperstimulation (COH) is performed in conjunction with other interventions like in vitro fertilization (IVF) during assisted reproductive technology (ART). COH is beneficial as it allows the scheduling of IVF treatments. During this intervention, inhibiting premature surges of LH is important because premature elevated LH levels can hinder effective multiple follicular maturation and can lead to an undesirable increase in progesterone levels. Ganirelix aims to suppress premature LH surges by competitively blocking the GnRH receptors on the pituitary gonadotroph and subsequent transduction pathways. Ganirelix-induced suppression of gonadotropin secretion is rapid and reversible. The suppression of pituitary LH secretion by ganirelix is more pronounced than that of FSH. An initial release of endogenous gonadotropins has not been detected with ganirelix, which is consistent with an antagonist effect.
Pharmacodynamics
Ganirelix modulates the hypothalamic-pituitary-gonadal axis by causing a rapid, profound, reversible suppression of endogenous gonadotropins. During controlled ovarian stimulation, it suppresses luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion from the pituitary gland. Unlike GnRH agonists that causes an initial increase in gonadotropin levels, ganirelix does not cause this effect before premature LH surge inhibition. Ganirelix is also not associated with hypo‐estrogenic side effects, flare‐up, and a long down‐regulation period induced by GnRH agonists. In patients undergoing controlled ovarian stimulation, the median duration of ganirelix treatment was five days. In one study, multiple-dose administration of 0.25 mg ganirelix decreased serum LH, FSH and estradiol (E2) concentrations from baseline by 74, 32, and 25% after the last dose, respectively. Serum hormone levels returned to pre-treatment levels within two days after the last injection.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C80H113N18O13CL
Molecular Weight
1570.31902
Exact Mass
1568.842
CAS #
123246-29-7
PubChem CID
16130957
Appearance
Typically exists as solid at room temperature
Density
1.3±0.1 g/cm3
Index of Refraction
1.632
LogP
6.75
Hydrogen Bond Donor Count
16
Hydrogen Bond Acceptor Count
16
Rotatable Bond Count
48
Heavy Atom Count
112
Complexity
3030
Defined Atom Stereocenter Count
10
SMILES
CCN/C(/NCCCC[C@@H](NC(CNC(CNC(CNC(CNC([C@H](NC(C)=O)CC1=CC2=CC=CC=C2C=C1)=O)=O)=O)=O)=O)C(N[C@@H](CC(C)C)C(N[C@@H](CCCCN/C(/NCC)=N/CC)C(N1[C@H](C(N[C@H](C)C(N)=O)=O)CCC1)=O)=O)=O)=N\CC
InChi Key
GJNXBNATEDXMAK-PFLSVRRQSA-N
InChi Code
InChI=1S/C80H113ClN18O13/c1-9-84-79(85-10-2)88-38-17-15-24-60(70(104)94-62(41-49(5)6)71(105)93-61(25-16-18-39-89-80(86-11-3)87-12-4)78(112)99-40-20-26-68(99)77(111)90-50(7)69(82)103)92-73(107)64(44-53-30-35-59(102)36-31-53)97-76(110)67(48-100)98-75(109)66(46-55-21-19-37-83-47-55)96-74(108)65(43-52-28-33-58(81)34-29-52)95-72(106)63(91-51(8)101)45-54-27-32-56-22-13-14-23-57(56)42-54/h13-14,19,21-23,27-37,42,47,49-50,60-68,100,102H,9-12,15-18,20,24-26,38-41,43-46,48H2,1-8H3,(H2,82,103)(H,90,111)(H,91,101)(H,92,107)(H,93,105)(H,94,104)(H,95,106)(H,96,108)(H,97,110)(H,98,109)(H2,84,85,88)(H2,86,87,89)/t50-,60-,61+,62+,63-,64+,65-,66-,67+,68+/m1/s1
Chemical Name
(2S)-1-[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2R)-2-[[(2R)-2-acetamido-3-naphthalen-2-ylpropanoyl]amino]-3-(4-chlorophenyl)propanoyl]amino]-3-pyridin-3-ylpropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-6-[bis(ethylamino)methylideneamino]hexanoyl]amino]-4-methylpentanoyl]amino]-6-[bis(ethylamino)methylideneamino]hexanoyl]-N-[(2R)-1-amino-1-oxopropan-2-yl]pyrrolidine-2-carboxamide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.6368 mL 3.1841 mL 6.3681 mL
5 mM 0.1274 mL 0.6368 mL 1.2736 mL
10 mM 0.0637 mL 0.3184 mL 0.6368 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us