yingweiwo

Gefapixant citrate

Alias: Gefapixant citrate; MK-7264; MK 7264; Gefapixant citrate; DFK0FC2VVV; Gefapixant citrate [USAN]; 2310299-91-1; MK-7264; Gefapixant (citrate); UNII-DFK0FC2VVV; MK7264
Cat No.:V44698 Purity: ≥98%
Gefapixant citrate is an orally bioavailable P2X3 receptor (P2X3R) antagonist (inhibitor) with IC50s of ~30 nM and 100-250 nM for human homologous recombinant hP2X3 and hP2X2/3, respectively.
Gefapixant citrate
Gefapixant citrate Chemical Structure CAS No.: 2310299-91-1
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Gefapixant citrate:

  • Gefapixant (AF219; MK-7264)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Gefapixant citrate is an orally bioavailable P2X3 receptor (P2X3R) antagonist (inhibitor) with IC50s of ~30 nM and 100-250 nM for human homologous recombinant hP2X3 and hP2X2/3, respectively. Gefapixant citrate may be utilized to treat chronic cough and knee osteoarthritis.
Biological Activity I Assay Protocols (From Reference)
Targets
IC50: ~30 nM (recombinant hP2X3 homotrimers), 100-250 nM (hP2X2/3 heterotrimeric receptors)[1].
ln Vitro
Gemfapic citrate does not inhibit any receptor that contains non-P2X3 subunits (recombinant homotrimeric hP2X1, hP2X2, hP2X4, rP2X5, and hP2X7 channels have IC50 values >10,000 nM) [1].
ln Vivo
In a rat model of knee osteoarthritis (14 days after intra-articular treatment of monoiodoacetate), gemfapic citrate (7 days b.i.d., orally) reduced weight-bearing laterality at both higher dosages. Complete reversal of severe hyperalgesia [2].
Enzyme Assay
The aryloxy-pyrimidinediamine, AF-219 (Ford et al., 2013; Smith et al., 2013) is an orally active small molecule (Mol Wt. ∼350 Daltons) antagonist at human P2X3-containing receptors. The inhibitory potency (IC50) of AF-219 has been reported as ∼30 nM versus recombinant hP2X3 homotrimers and 100–250 nM at hP2X2/3 heterotrimeric receptors, potencies very similar to those reported for recombinant rat receptors, and it displays no inhibitory impact on any non-P2X3 subunit containing receptors (IC50 values ≫ 10,000 nM at recombinant homotrimeric hP2X1, hP2X2, hP2X4, rP2X5 and hP2X7 channels). Reports from other related chemical members of this P2X3 selective pyrimidinediamine class have shown that the mechanism of inhibition is non-competitive (allosteric) and have been mixed regarding species-independency of P2X3 receptor potency estimates: AF-353 (Gever et al., 2010) shows remarkable potency congruency between human and rat recombinant P2X3 homotrimers (IC50 values of 8.7 and 8.9 nM, respectively) whereas the more potent analog AF-792 (also referred to as RO-51; developed initially as a potential prodrug for AF-353) was shown to be less potent at human versus rat P2X3 receptors in one report (Serrano et al., 2012) and yet species-independent in another (Jahangir et al., 2009). It is important to note that some selectivity for P2X3 versus P2X2/3 channels has been a common claim across several chemical classes of inhibitors (see Gum et al., 2012: e.g., AF-219 analogs, nucleotides such as TNP-ATP, benzenetricarboxylic acids such as A-317491), although in most studies values reported are not affinity determinations but IC50 estimates. Under such circumstances true selectivity cannot be categorically inferred, especially for the competitive antagonists (such as TNP-ATP and A-317491) as the IC50 is a parameter that will change with agonist concentration used and depends on agonist potency at the different trimers.[1]
ADME/Pharmacokinetics
Absorption
The absolute bioavailability of gefapixant has not been evaluated but is estimated to be ≥78%. At the recommended dose of 45 mg twice daily, steady-state is achieved within 2 days and the steady-state mean plasma AUC and Cmax are 4,144 ng∙hr/mL and 531 ng/mL, respectively. The time to peak plasma concentration (Tmax) following oral administration ranges from one to four hours. The co-administration of gefapixant with a high-fat, high-calorie meal had no effect on its AUC or Cmax.

Route of Elimination
Gefapixant is primarily eliminated via renal excretion. Following a single oral radiolabeled dose in a healthy male subject, approximately 76.4% of the administered radioactivity was recovered in the urine and 22.6% was recovered in the feces. Unchanged parent drug accounted for 64% of the recovered dose in the feces and accounted for 20% of the recovered dose in the urine.

Volume of Distribution
Based on population pharmacokinetic analyses, the estimated steady-state apparent volume of distribution is 133.8 L (Vc 101 L and Vp 32.8 L) following oral twice-daily administration of gefapixant 45 mg.

Clearance
Population pharmacokinetic analyses integrating data from Phase 1, 2, and 3 data showed a geometric mean apparent clearance (Cl/F) of 10.8 L/h. In clinical pharmacology studies, the observed clearance was 14.8 L/h and renal clearance was approximately 8.7 L/h.
Metabolism / Metabolites
Gefapixant is relatively minimally metabolized. Following oral administration, only 14% of the administered dose was recovered as metabolites in the urine and feces. Unchanged parent drug is the major (87%) drug-related component in plasma, with circulating metabolites accounting for <10% each. The primary biotransformation pathways observed in gefapixant ADME studies included hydroxylation, O-demethylation, dehydrogenation, oxidation, and direct glucuronidation. Secondary biotransformation pathways included glucuronidation of O-demethylated metabolite as well as the formation of a metabolite that was O-demethylated and hydrogenated. The three most abundant circulating metabolites were: M1 (a glucuronide of O-demethylated gefapixant), M5 (a directly glucuronidated parent) and M13 (a hydroxylated metabolite.), which accounted for 1.0%, 6.3%, and 5.8%, respectively, of the total drug-related components in plasma.
Biological Half-Life
The terminal half-life of gefapixant is 6-10 hours.
Toxicity/Toxicokinetics
Protein Binding
Gefapixant exhibits relatively low protein binding (55%) _in vitro_, and thus drug-drug interactions resulting from protein displacement are not expected.
References

[1]. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory and urological disorders. Front Cell Neurosci. 2013; 7: 267.

[2]. Ford AP, In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization. Purinergic Signal. 2012 Feb;8(Suppl 1):3-26.

[3]. Validation of a visual analog scale for assessing cough severity in patients with chronic cough. Ther Adv Respir Dis. 2021 Jan-Dec;15:17534666211049743.

Additional Infomation
Drug Indication
Treatment of unexplained or chronic refractory cough
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Weight
545.52
Exact Mass
545.14
Elemental Analysis
C, 44.04; H, 4.99; N, 12.84; O, 32.26; S, 5.88
CAS #
2310299-91-1
Related CAS #
Gefapixant;1015787-98-0
PubChem CID
145720531
Appearance
Solid powder
Hydrogen Bond Donor Count
7
Hydrogen Bond Acceptor Count
16
Rotatable Bond Count
10
Heavy Atom Count
37
Complexity
739
Defined Atom Stereocenter Count
0
InChi Key
AIJVJYUOMCRFOE-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H19N5O4S.C6H8O7/c1-7(2)8-4-10(22-3)12(24(17,20)21)5-9(8)23-11-6-18-14(16)19-13(11)15;7-3(8)1-6(13,5(11)12)2-4(9)10/h4-7H,1-3H3,(H2,17,20,21)(H4,15,16,18,19);13H,1-2H2,(H,7,8)(H,9,10)(H,11,12)
Chemical Name
5-(2,4-diaminopyrimidin-5-yl)oxy-2-methoxy-4-propan-2-ylbenzenesulfonamide;2-hydroxypropane-1,2,3-tricarboxylic acid
Synonyms
Gefapixant citrate; MK-7264; MK 7264; Gefapixant citrate; DFK0FC2VVV; Gefapixant citrate [USAN]; 2310299-91-1; MK-7264; Gefapixant (citrate); UNII-DFK0FC2VVV; MK7264
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8331 mL 9.1656 mL 18.3311 mL
5 mM 0.3666 mL 1.8331 mL 3.6662 mL
10 mM 0.1833 mL 0.9166 mL 1.8331 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
The Real-world Treatment Satisfaction by Gefapixiant in RCC
CTID: NCT06542484
Phase: N/A
Status: Not yet recruiting
Date: 2024-08-12
Effect of Gefapixant on Cough-related Brain Activity in Patients With Chronic Cough
CTID: NCT05813223
Phase: Early Phase 1
Status: Recruiting
Date: 2024-05-09
Efficacy and Safety of Gefapixant (MK-7264) in Women With Chronic Cough and Stress Urinary Incontinence (MK-7264-042)
CTID: NCT04193176
Phase: Phase 3
Status: Completed
Date: 2023-09-22
Efficacy and Safety of Gefapixant (MK-7264) in Adult Participants With Recent Onset Chronic Cough (MK-7264-043)
CTID: NCT04193202
Phase: Phase 3
Status: Completed
Date: 2023-05-16
The Pharmacokinetics of Gefapixant (MK-7264) in Participants With Renal Insufficiency (MK-7264-026)
CTID: NCT03108924
Phase: Phase 1
Status: Completed
Date: 2022-07-27
A Multiple-Dose Pharmacokinetics Study of Two Gefapixant (AF-219/MK-7264) Formulations
CTID: NCT02492776
Phase: Phase 1
Status: Completed
Date: 2022-07-22
Contact Us