yingweiwo

GW-803430

Alias: GW803430; GW 803430; 515141-51-2; GW-3430; Thieno[3,2-d]pyrimidin-4(3H)-one, 6-(4-chlorophenyl)-3-[3-methoxy-4-[2-(1-pyrrolidinyl)ethoxy]phenyl]-; 6-(4-chlorophenyl)-3-(3-methoxy-4-(2-(pyrrolidin-1-yl)ethoxy)phenyl)thieno[3,2-d]pyrimidin-4(3H)-one; GW803430; GW3430; CHEMBL214957; GW-803430
Cat No.:V21984 Purity: ≥98%
GW-803430 (GW-3430) is a potent and specific melanin-concentrating hormone receptor 1 (MCH R1) antagonist (inhibitor) with pIC50 of 9.3.
GW-803430
GW-803430 Chemical Structure CAS No.: 515141-51-2
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
GW-803430 (GW-3430) is a potent and specific melanin-concentrating hormone receptor 1 (MCH R1) antagonist (inhibitor) with pIC50 of 9.3. GW-803430 is orally bioactive in animal models of obesity.
Biological Activity I Assay Protocols (From Reference)
Targets
MCH R1/melanin-concentrating hormone receptor 1 (pIC50 = 9.3)
ln Vitro
The MCH-induced MCHR1 receptor is highly active against GW-803430, with an IC50 value of about 13 nM [2].
ln Vivo
In comparison to the vehicle control, GW-803430 (0.3, 3, and 15 mg/kg; oral; once daily) produced a sustained dose-dependent weight decrease [1]. Because of its favorable pharmacokinetic characteristics in mice (bioavailability = 31%, t1/2 = 11 h) and brain penetration (6:1 brain:plasma concentration), GW-803430 is an appropriate molecule [1].
Enzyme Assay
Melanin Concentrating Hormone Receptor (MCHR 1 ) Assay. [2]
Antagonistic potential of N. nucifera extracts on MCHR1 receptor was studied using MCHR1 Gi coupled CHO-K1 cells. Cell density of 3 × 104 cells/well was plated in 96-well tissue culture plates containing cell plating reagent and incubated for 24 h. After incubation, the entire medium was aspirated and 45 μL of cell assay buffer and antibody mixture was added to each well. N. nucifera or reference antagonist (GW 803430) was added to the respective wells and incubated for 15 min at 37°C and 5% CO2. Agonist compound (MCH—62.5 nM + Forskolin 20 μM) was added to the respective wells and incubated for 30 min. 60 μL of prepared detection reagent solution and cAMP solution D was added to each well and incubated for 60 min at room temperature in the dark. 60 μL of cAMP Solution A was added and incubated for 3 hr at room temperature in the dark. Plate was read using luminescence plate reader (FLUOstar).
Cell Assay
The compounds were assayed for MCH R1 functional antagonist activity as described in WO 2004/092181 A1 (corrected version), pp 215–216. CHO cells expressing an elkgal4-luc+ reporter gene (host) were transfected with human MCH R1. The ability of the antagonists to inhibit an EC80 response of MCH was assessed via a TopCount microplate scintillation counter (Packard) and the specificity of the MCH R1 response was determined by measuring the ability of the antagonists to inhibit an EC80 thrombin response in the host cells. All compounds were assayed with n ⩾ 4. [1]
Animal Protocol
Animal/Disease Models: High-fat diet-induced obese AKR/J mice [1]
Doses: 0.3, 3, and 15 mg/kg
Route of Administration: Orally, one time/day for 12 days
Experimental Results: Result in sustained dose-dependent weight loss of -6.2 %, relative to vehicle control, were -12.1% and -13.1% respectively.
References

[1]. The discovery and optimization of pyrimidinone-containing MCH R1 antagonists. Bioorg Med Chem Lett. 2006 Sep 15;16(18):4723-7.

[2]. Effect of Nelumbo nucifera Petal Extracts on Lipase, Adipogenesis, Adipolysis, and Central Receptors of Obesity. Evid Based Complement Alternat Med. 2013;2013:145925.

Additional Infomation
Optimization of a series of constrained melanin-concentrating hormone receptor 1 (MCH R1) antagonists has provided compounds with potent and selective MCH R1 activity. Details of the optimization process are provided and the use of one of the compounds in an animal model of diet-induced obesity is presented. [1]
N. nucifera is one among the important medicinal plants assessed for its antiobesity action in various preclinical models. The present study was aimed at investigating the antiobesity effect of methanol and successive water extracts of petals of N. nucifera by studying its effect on adipogenesis, adipolysis, lipase, serotonin (5-HT2C), cannabinoid (CNR2), melanocyte concentrating hormone (MCHR1), and melanocortin (MC4R) receptors. Both methanol and successive water extracts of N. nucifera petals had an effect on inhibition of lipid storage in adipocytes and on increasing lipolysis. N. nucifera petal methanol extract exhibited the concentration-dependent inhibitory effect on lipase activity with an IC50 value of 47 µg/mL. N. nucifera petal extracts showed evident agonist and antagonist activity towards 5-HT2C and CNR2 receptors, respectively, while it showed no effect towards MCHR1 and MC4R receptors. Overall, methanol extract of N. nucifera petals showed better activity than successive water extract. [2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H24CLN3O3S
Molecular Weight
481.995
Exact Mass
481.123
Elemental Analysis
C, 62.30; H, 5.02; Cl, 7.35; N, 8.72; O, 9.96; S, 6.65
CAS #
515141-51-2
PubChem CID
9826520
Appearance
Off-white to yellow solid powder
LogP
5.188
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
7
Heavy Atom Count
33
Complexity
698
Defined Atom Stereocenter Count
0
InChi Key
MWULMTACIBZPGN-UHFFFAOYSA-N
InChi Code
InChI=1S/C25H24ClN3O3S/c1-31-22-14-19(8-9-21(22)32-13-12-28-10-2-3-11-28)29-16-27-20-15-23(33-24(20)25(29)30)17-4-6-18(26)7-5-17/h4-9,14-16H,2-3,10-13H2,1H3
Chemical Name
6-(4-chlorophenyl)-3-[3-methoxy-4-(2-pyrrolidin-1-ylethoxy)phenyl]thieno[3,2-d]pyrimidin-4-one
Synonyms
GW803430; GW 803430; 515141-51-2; GW-3430; Thieno[3,2-d]pyrimidin-4(3H)-one, 6-(4-chlorophenyl)-3-[3-methoxy-4-[2-(1-pyrrolidinyl)ethoxy]phenyl]-; 6-(4-chlorophenyl)-3-(3-methoxy-4-(2-(pyrrolidin-1-yl)ethoxy)phenyl)thieno[3,2-d]pyrimidin-4(3H)-one; GW803430; GW3430; CHEMBL214957; GW-803430
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0747 mL 10.3734 mL 20.7469 mL
5 mM 0.4149 mL 2.0747 mL 4.1494 mL
10 mM 0.2075 mL 1.0373 mL 2.0747 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us