yingweiwo

Hydralazine

Cat No.:V22293 Purity: ≥98%
Hydralazine is an orally bioactive anti-hypertensive (blood pressure lowering) drug that directly reduces peripheral resistance by relaxing the smooth muscle cell layer of arterial blood vessels.
Hydralazine
Hydralazine Chemical Structure CAS No.: 86-54-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Hydralazine:

  • Hydralazine HCl (Apresoline, Adrolazine , Apresrex)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Hydralazine is an orally bioactive anti-hypertensive (blood pressure lowering) drug that directly reduces peripheral resistance by relaxing the smooth muscle cell layer of arterial blood vessels. Hydralazine has anti-oxidant effect, inhibiting reactive oxygen species (ROS) release and O2·- generation, with IC50 of 9.53 mM and 1.19 mM respectively.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Taking oral hydralazine with food improves the bioavailability of the drug. An intravenous dose of 0.3mg/kg leads to an AUC of 17.5-29.4µM\*min and a 1mg/kg oral dose leads to an AUC of 4.0-30.4µM\*min. The Cmax of oral hydralazine is 0.12-1.31µM depending on the acetylator status of patients.
<10% of hydralazine is recovered in the feces; 65-90% is recovered in the urine.
The volume of distribution is 1.34±0.79L/kg in congestive heart failure patients and 1.98±0.22L/kg in hypertensive patients.
The majority of hydralazine clearance is extrahepatic- 55% for rapid acetylators and 70% for slow acetylators. The average clearance in congestive heart failure patients is 1.77±0.48L/kg/h, while hypertensive patients have an average clearance of 42.7±8.9mL/min/kg.
Metabolism / Metabolites
Acetylation is a minor metabolic pathway for hydralazine; the major pathway is hydroxylation followed by glucuronidation. There are 5 identified metabolic pathways for hydralazine. Hydralazine can be metabolized to phthalazine or α-ketoglutarate hydrazone. These metabolites can be further converted to phthalazinone or hydralazine can be metabolized directly to phthalazinone. Hydralazine can undergo a reversible converstion to the active hydralazine acetone hydrazone. Hydralazine is spontaneously converted to the active pyruvic acid hydrazone or the pyruvic acid hydrazone tricyclic dehydration product, and these metabolites can convert back and forth between these 2 forms. Hydralazine can be converted to hydrazinophthalazinone, which is further converted to the active acetylhydrazinophthalazinone. The final metabolic process hydralazine can undergo is the conversion to an unnamed hydralazine metabolite, which is further metabolized to 3-methyl-s-triazolophthalazine (MTP). MTP can be metabolized to 9-hydroxy-methyltriazolophthalazine or 3-hydroxy-methyltriazolophthalazine; the latter is converted to triazolophthalazine.
Hydralazine has known human metabolites that include hydralazine N-acetyl.
Biological Half-Life
Hydralazine has a half life of 2.2-7.8h in rapid acetylators and 2.0-5.8h in slow acetylators. The half life in heart failure patients is 57-241 minutes with an average of 105 minutes and in hypertensive patients is 200 minutes for rapid acetylators and 297 minutes for slow acetylators. Hydralazine is subject to polymorphic acetylation; slow acetylators generally have higher plasma levels of hydralazine and require lower doses to maintain control of pressure. However, other factors, such as acetylation being a minor metabolic pathway for hydralazine, will contribute to differences in elimination rates.
Toxicity/Toxicokinetics
Hepatotoxicity
Serum aminotransferase elevations during hydralazine therapy are considered uncommon. However, hydralazine has been clearly linked to cases of acute liver injury with jaundice as well as a delayed lupus-like syndrome. Two clinical patterns of hepatic injury have been described, associated with either a short (2 to 6 weeks) or long (2 months to more than a year) latency period. The clinically apparent liver injury is usually hepatocellular, although cholestatic forms have also been reported (Case 1). In cases with a short latency period, rash, fever and eosinophilia are common and the onset is typically abrupt and severe, and recovery is rapid. In cases with a longer latency (Case 2), the onset is more typically insidious, liver biopsy may resemble chronic hepatitis and demonstrate fibrosis, and autoantibodies are often present. The late form of hepatitis may also accompany the lupus-like syndrome that occurs with hydralazine, particularly in high doses when given for 6 months or more. Recovery can be prolonged. Autoantibodies to isoforms of the P450 system (CYP 1A2) have been identified in patients with hepatotoxicity due to the structurally related antihypertensive agent dihydralazine (available in Europe, but not the United States) and which is associated with a higher rate of hepatotoxicity than hydralazine.
Likelihood score: A (well established cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Limited milk level and infant serum level data and a long history of use in postpartum mothers indicate that hydralazine is an acceptable antihypertensive in nursing mothers, even those nursing newborns.
◉ Effects in Breastfed Infants
No adverse effects reported in one infant breastfed for 8 weeks.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Hydralazine is 87% protein bound in serum likely to human serum albumin.
References

[1]. Arce C, Segura-Pacheco B, Perez-Cardenas E, Taja-Chayeb L, Candelaria M, Dueñnas-Gonzalez A. Hydralazine target: from blood vessels to the epigenome. J Transl Med. 2006 Feb 28;4:10.

[2]. Antioxidant activity and inhibitory effects of hydralazine on inducible NOS/COX-2 gene and protein expression in rat peritoneal macrophages. Int Immunopharmacol. 2004 Feb;4(2):163-77.

Additional Infomation
Hydralazine is the 1-hydrazino derivative of phthalazine; a direct-acting vasodilator that is used as an antihypertensive agent. It has a role as an antihypertensive agent and a vasodilator agent. It is a member of phthalazines, an azaarene, an ortho-fused heteroarene and a member of hydrazines.
Originally developed in the 1950s as a malaria treatment, hydralazine showed antihypertensive ability and was soon repurposed. Hydralazine is a hydrazine derivative vasodilator used alone or as adjunct therapy in the treatment of hypertension and only as adjunct therapy in the treatment of heart failure. Hydralazine is no longer a first line therapy for these indications since the development of newer antihypertensive medications. Hydralazine hydrochloride was FDA approved on 15 January 1953.
Hydralazine is an Arteriolar Vasodilator. The physiologic effect of hydralazine is by means of Arteriolar Vasodilation.
Hydralazine is a commonly used oral antihypertensive agent that acts by inducing peripheral vasodilation. Hydralazine has been linked to several forms of acute liver injury as well as a lupus-like syndrome.
Hydralazine has been reported in Achillea pseudopectinata with data available.
Hydralazine is a phthalazine derivative with antihypertensive effects. Hydralazine exerts its vasodilatory effects through modification of the contractile state of arterial vascular smooth muscle by altering intracellular calcium release, and interfering with smooth muscle cell calcium influx. This agent also causes inhibition of phosphorylation of myosin protein or chelation of trace metals required for smooth muscle contraction, thereby resulting in an increase in heart rate, stroke volume and cardiac output.
A direct-acting vasodilator that is used as an antihypertensive agent.
See also: Hydralazine Hydrochloride (has salt form).
Drug Indication
Hydralazine is indicated alone or adjunct to standard therapy to treat essential hypertension. A combination product with isosorbide dinitrate is indicated as an adjunct therapy in the treatment of heart failure.
Mechanism of Action
Hydralazine may interfere with calcium transport in vascular smooth muscle by an unknown mechanism to relax arteriolar smooth muscle and lower blood pressure. The interference with calcium transport may be by preventing influx of calcium into cells, preventing calcium release from intracellular compartments, directly acting on actin and myosin, or a combination of these actions. This decrease in vascular resistance leads to increased heart rate, stroke volume, and cardiac output. Hydralazine also competes with protocollagen prolyl hydroxylase (CPH) for free iron. This competition inhibits CPH mediated hydroxylation of HIF-1α, preventing the degradation of HIF-1α. Induction of HIF-1α and VEGF promote proliferation of endothelial cells and angiogenesis.
Pharmacodynamics
Hydralazine interferes with calcium transport to relax arteriolar smooth muscle and lower blood pressure. Hydralazine has a short duration of action of 2-6h. This drug has a wide therapeutic window, as patients can tolerate doses of up to 300mg. Patients should be cautioned regarding the risk of developing systemic lupus erythematosus syndrome.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C8H8N4
Molecular Weight
160.17592
Exact Mass
160.075
CAS #
86-54-4
Related CAS #
Hydralazine hydrochloride;304-20-1
PubChem CID
3637
Appearance
Typically exists as solid at room temperature
Density
1.2583 (rough estimate)
Boiling Point
276.07°C (rough estimate)
Melting Point
172ºC
Index of Refraction
1.5872 (estimate)
LogP
1.688
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
1
Heavy Atom Count
12
Complexity
150
Defined Atom Stereocenter Count
0
SMILES
N(=C1C2C(=CC=CC=2)C=NN1)N
InChi Key
RPTUSVTUFVMDQK-UHFFFAOYSA-N
InChi Code
InChI=1S/C8H8N4/c9-11-8-7-4-2-1-3-6(7)5-10-12-8/h1-5H,9H2,(H,11,12)
Chemical Name
phthalazin-1-ylhydrazine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 6.2430 mL 31.2149 mL 62.4298 mL
5 mM 1.2486 mL 6.2430 mL 12.4860 mL
10 mM 0.6243 mL 3.1215 mL 6.2430 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us