yingweiwo

Hydroxyfasudil HCl (HA1100)

Alias: HA-1100 hydrochloride; HA 1100 hydrochloride; HA1100 hydrochloride; Hydroxyfasudil Hydrochloride; 155558-32-0; HA 1100 hydrochloride; Hydroxy Fasudil Hydrochloride; Hydroxyfasudil (hydrochloride); Hydroxyfasudil HCl; HA-1100 hydrochloride;HA 1100 hydrochloride;HA1100 hydrochloride; 5-((1,4-Diazepan-1-yl)sulfonyl)isoquinolin-1(2H)-one hydrochloride; HA-1100 HCl
Cat No.:V2733 Purity: ≥98%
Hydroxyfasudil HCl (also called HA1100 HCl), ametabolite of Fasudil, is a potent Rho-kinase inhibitor and vasodilator.
Hydroxyfasudil HCl (HA1100)
Hydroxyfasudil HCl (HA1100) Chemical Structure CAS No.: 155558-32-0
Product category: ROCK
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of Hydroxyfasudil HCl (HA1100):

  • Hydroxyfasudil (HA-1100)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Hydroxyfasudil HCl (also called HA1100 HCl), a metabolite of Fasudil, is a potent Rho-kinase inhibitor and vasodilator. It acts as a ROCK inhibitor, with IC50s of 0.73 and 0.72 μM for ROCK1 and ROCK2, respectively. Hydroxyfasudil prevents the downregulation of endothelial NO synthase (eNOS) under hypoxic conditions. In a concentration-dependent manner, hydroxyfasudil increases eNOS mRNA and protein expression, resulting in a 1.9- and 1.6-fold increase, respectively, at 10 μmol/L. This correlates with a 1.5- and 2.3-fold increase in eNOS activity and NO production, respectively.

Biological Activity I Assay Protocols (From Reference)
Targets
ROCK2 (IC50 = 0.72 μM); ROCK1 (IC50 = 0.73 μM); PKA (IC50 = 37 μM)
ln Vitro
The ROCK inhibitor hydroxyfasudil hydrochloride has IC50 values of 0.73 and 0.72 μM for ROCK1 and ROCK2, respectively. Additionally, hydroxyfasudil inhibits PKA less potently; its IC50 of 37 μM is 50 times higher than that of the ROCKs. eNOS mRNA levels are raised by hydroxyfasudil, which has an EC50 value of 0.8 ± 0.3 μM. In human aortic endothelial cells (HAEC), hydroxyfasudil (0-100 μM) concentration-dependently increases eNOS activity and stimulates NO production. At concentrations ranging from 0.1 to 100 μM, hydroxyfasudil (10 μM) has no effect on eNOS promoter activity, but it does lengthen the half-life of eNOS mRNA from 13 to 16 hours[1].
ln Vivo
In SD rats, hydroxyfasudil (10 mg/kg, ip) dramatically raises the average and maximal voided volumes. Moreover, hydroxyfasudil dramatically lowers the maximal detrusor pressure[2]. In spontaneously hypertensive rats, hydroxyfasudil (3 mg/kg, ip) reduces hypercontractility brought on by norepinephrine (SHRs). Additionally, rats with decreased penile cGMP contents respond significantly better to Hydroxyfasudil (3, 10 mg/kg, ip)[3].
Enzyme Assay
Hydroxyfasudil HCl (also called HA1100 HCl), a metabolite of Fasudil, is a strong vasodilator and Rho-kinase inhibitor. With IC50s of 0.73 and 0.72 μM for ROCK1 and ROCK2, respectively, it inhibits ROCK. In hypoxic environments, hydroxyfasudil inhibits the downregulation of endothelial NO synthase (eNOS). Hydroxyfasudil stimulates eNOS mRNA and protein expression in a concentration-dependent manner; at 10 μmol/L, this leads to a 1.9- and 1.6-fold increase, respectively. This corresponds to a 1.5- and 2.3-fold rise in NO production and eNOS activity, respectively.
Cell Assay
The expression and activity of eNOS are measured after hydroxyfasudil is added to human vascular endothelial cells at varying concentrations (0.1 to 100 μmol/L).
Animal Protocol
Dissolved in saline; 10, 30, and 100 μg/kg; Intracoronary administration
Mongrel dogs
References

[1]. Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke. 2005 Oct;36(10):2251-7. Epub 2005 Sep 1.

[2]. Effect of the rho-kinase inhibitor hydroxyfasudil on bladder overactivity: an experimental rat model. Int J Urol. 2009 Oct;16(10):842-7.

[3]. Hydroxyfasudil ameliorates penile dysfunction in the male spontaneously hypertensive rat. Pharmacol Res. 2012 Oct;66(4):325-31.

Additional Infomation
Objectives: To investigate the effects of the rho-kinase inhibitor hydroxyfasudil on bladder overactivity in cyclophosphamide (CYP)-induced cystitis. Methods: Female Sprague-Dawley rats received a single intraperitoneal injection of CYP (200 mg/kg). Four days later, bladder function was evaluated by: (i) monitoring micturition behavior in metabolic cages between hydroxyfasudil- and vehicle-treated animals; (ii) measuring changes in continuous cystometrograms in response to intravenous hydroxyfasudil under anesthesia; and (iii) conducting a functional study examining the effect of hydroxyfasudil on the concentration-response curves to carbachol in bladder tissue strips. Results: Intraperitoneal injection of hydroxyfasudil (10 mg/kg) significantly increased both the average and maximal voided volumes. Hydroxyfasudil significantly decreased the maximal detrusor pressure, whereas the intercontraction interval was not significantly affected. After administration of 0.1, 0.3, 1, and 3 microM hydroxyfasudil, the maximal contraction of the concentration-response curves to carbachol was significantly reduced to 74.5 +/- 4.2%, 55.2 +/- 5.6%, 29.4 +/- 5.6%, and 21.6 +/- 8.2% of the control values, respectively. Conclusions: The present findings indicate that hydroxyfasudil might be a new treatment option for CYP-induced detrusor overactivity.[1]
Hypertension represents a major risk factor for erectile dysfunction. Although the etiology of hypertension-induced erectile dysfunction is multifactorial and still unknown, Rho-Rho kinase pathway is one of the key factors. To investigate whether administration of hydroxyfasudil, a Rho kinase inhibitor could prevent dysfunction of NO-induced relaxation in corpus cavernosum smooth muscle in the SHR (spontaneously hypertensive rat), twelve-week-old male SHRs were treated with hydroxyfasudil (3 or 10 mg/kg, i.p.) once a day for 6 weeks. Wistar rats and SHRs treatment with vehicle were used as age-matched controls. Penile cGMP concentrations and Rho kinase activities were determined, and penile function was estimated by organ bath studies with norepinephrine-induced contractions and acetylcholine-induced relaxations. The participation mRNA levels of eNOS and participation protein levels of eNOS and phosphorylated eNOS were investigated by quantitative real-time PCR methods and immunoblot analysis, respectively. The SHR showed significantly decreased cGMP concentrations, increased Rho kinase activities, norepinephrine-induced hyper-contractions, and acetylcholine-induced hypo-relaxations in the penile tissue. Treatment with hydroxyfasudil significantly improved the decreased penile cGMP concentrations, the increased Rho kinase activities, the increased norepinephrine-induced contractions, and the decreased acetylcholine-induced relaxation in a dose-dependent manner. Although there were no significant differences in expression protein levels of eNOS among any of the groups, down-regulation of eNOS mRNAs as well as phosphorylated eNOS were significantly ameliorated after treatment with hydroxyfasudil. Our data suggest that hydroxyfasudil ameliorates hypertension-associated dysfunction of NO-induced relaxation in corpus cavernosum smooth muscle possibly via inhibition of the Rho-Rho kinase pathway and activation of NO-eNOS pathway in the SHR.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C14H17N3O3S.HCL.XH2O
Molecular Weight
343.83
Exact Mass
343.075
Elemental Analysis
48.91; H, 5.28; Cl, 10.31; N, 12.22; O, 13.96; S, 9.32
CAS #
155558-32-0
Related CAS #
Hydroxyfasudil;105628-72-6
PubChem CID
11371328
Appearance
Typically exists as White to off-white solids at room temperature
Melting Point
>250ºC(dec.)
LogP
3.073
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
2
Heavy Atom Count
22
Complexity
526
Defined Atom Stereocenter Count
0
SMILES
Cl[H].S(C1=C([H])C([H])=C([H])C2C(N([H])C([H])=C([H])C1=2)=O)(N1C([H])([H])C([H])([H])N([H])C([H])([H])C([H])([H])C1([H])[H])(=O)=O
InChi Key
XWWFOUVDVJGNNG-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H17N3O3S.ClH/c18-14-12-3-1-4-13(11(12)5-7-16-14)21(19,20)17-9-2-6-15-8-10-17;/h1,3-5,7,15H,2,6,8-10H2,(H,16,18);1H
Chemical Name
5-(1,4-diazepan-1-ylsulfonyl)-2H-isoquinolin-1-one;hydrochloride
Synonyms
HA-1100 hydrochloride; HA 1100 hydrochloride; HA1100 hydrochloride; Hydroxyfasudil Hydrochloride; 155558-32-0; HA 1100 hydrochloride; Hydroxy Fasudil Hydrochloride; Hydroxyfasudil (hydrochloride); Hydroxyfasudil HCl; HA-1100 hydrochloride;HA 1100 hydrochloride;HA1100 hydrochloride; 5-((1,4-Diazepan-1-yl)sulfonyl)isoquinolin-1(2H)-one hydrochloride; HA-1100 HCl
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 68 mg/mL (197.8 mM)
Water:68 mg/mL (197.8 mM)
Ethanol:<1 mg/mL
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.9084 mL 14.5421 mL 29.0841 mL
5 mM 0.5817 mL 2.9084 mL 5.8168 mL
10 mM 0.2908 mL 1.4542 mL 2.9084 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Hydroxyfasudil HCl

    Upregulation of eNOS mRNA and protein by hydroxyfasudil (HFD).Stroke.2005 Oct;36(10):2251-7.
  • Hydroxyfasudil HCl

    Effects of hydroxyfasudil (HFD) on eNOS activity, NO production, eNOS promoter activity, and eNOS mRNA stability.Stroke.2005 Oct;36(10):2251-7.
  • Hydroxyfasudil HCl

    Effect of saline, hydroxyfasudil (0.1 mg kg−1, 0.3 mg kg−1), fasudil (0.3 mg kg−1) or nicorandil (0.3 mg kg−1) on tachy-pacing-induced ST-segment depression in dogs.Br J Pharmacol.2001 Dec;134(8):1724-30.
  • Hydroxyfasudil HCl

    Effect of saline, hydroxyfasudil (0.1 mg kg−1, 0.3 mg kg−1) or fasudil (0.3 mg kg−1) on regional myocardial blood flow (RMBF) of the left anterior descending coronary artery perfused endomyocardium region in dogs.Br J Pharmacol.2001 Dec;134(8):1724-30.
  • Hydroxyfasudil HCl

    Change in blood flow, blood pressure and heart rate after continuous i.v. infusion of saline, hydroxyfasudil (0.1 mg kg−1 or 0.3 mg kg−1) to anaesthetized dogs.Br J Pharmacol.2001 Dec;134(8):1724-30.
  • Hydroxyfasudil HCl

    Effects of hydroxyfasudil, fasudil, nicorandil or diltiazem (2 mg kg−1) on mean blood pressure (MBP), heart rate (HR) and cardiac conduction system in anaesthetized dogs.Br J Pharmacol.2001 Dec;134(8):1724-30.
Contact Us