yingweiwo

IACS-010759 HCl

Alias: IACS010759 hydrochloride; IACS-010759; IACS 010759;IACS-10759 HCl; IACS 10759; IACS10759 HCl
Cat No.:V3751 Purity: ≥98%
IACS-10759 HCl (IACS10759; IACS-010759) was identified as a potent and orally bioavailable inhibitor of complex I of oxidative phosphorylation (OXPHOS) with anticancer activity.
IACS-010759 HCl
IACS-010759 HCl Chemical Structure CAS No.: 1807523-99-4
Product category: Mitochondrial Metabolism
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of IACS-010759 HCl:

  • IACS-10759
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

IACS-10759 HCl (IACS10759; IACS-010759) was identified as a potent and orally bioavailable inhibitor of complex I of oxidative phosphorylation (OXPHOS) with anticancer activity. In isolated mitochondria or permeabilized cells, ATP production or oxygen consumption was inhibited at single digit nM concentrations in the presence of malate/glutamate, but not succinate. More directly, IACS-10759 inhibited the conversion of NADH to NAD+ in an immunoprecipitated complex I assay at low nM concentrations. Using genetic and pharmacological approaches, the specific complex I subunit inhibited by IACS-10759 has been identified and the mechanism of complex I inhibition is being investigated. Importantly, IACS-10759 is orally bioavailable with excellent physicochemical properties in preclinical species and achieved significant in vivo efficacy with daily oral dosing of 10-25 mg/kg. Specifically, there was a >50 day extension of median survival in an orthotopic AML cell line xenograft and robust regression in DLBCL and GBM xenograft models. In light of these results, as well as its drug like profile IACS-10759 has entered IND enabling studies with first-in-human studies targeted for third quarter of 2015.

Biological Activity I Assay Protocols (From Reference)
Targets
complex I of oxidative phosphorylation (OXPHOS)
ln Vitro
IACS-010759 hydrochloride (10, 30, 100 nM; for 4 or 5 days) lowers the viability of primary AML and promotes apoptosis [1]. IACS-010759 hydrochloride (0.001, 0.01, 0.1, 1, 10, 100, 1000 nM; 72 h) substantially suppresses OCR and galactose-dependent H460 cell survival with practically the same IC50 value of 1.4 nM[1]. IACS-010759 hydrochloride has similar action in mouse (average IC50=5.6 nM), rat (IC50=12.2 nM) and cynomolgus monkey (IC50=8.7 nM) cell lines [1].
ln Vivo
In mice with NB-1 (PGD null) subcutaneous xenografts, IACS-010759 hydrochloride (5, 10, 25 mg/kg/day; oral; for 21 days) at dosages of 5 or 10 mg/kg caused tumor reduction, negligible weight loss, and intolerance to the 25 mg/kg dose [1]. Less frequent dosing regimens (Q2D or Q3D) may somewhat enhance survival, but IACS-010759 hydrochloride (10?mg/kg; oral; QD (daily) or QD×5 (5 d on/2 d off); for 35 d) prolonged median survival from 28 days to over 60 days [1]. With a high volume of distribution and low plasma clearance, IACS-010759 hydrochloride (0.3 mg/kg for intravenous; 1 mg/kg for oral) has a prolonged terminal half-life (>24 hours) [1].
Enzyme Assay
Isolated mouse complex I assay[1]
Complex I was isolated from mouse heart mitochondria using an adaptation of the method of Sharpley and colleagues. The concentration of IACS-010759 in Fig. 1f was 60 nM. The NADH:decylubiquinone assay is described in Sharpley et al, and the APAD+ and H2O2 assays are described in Birrell et al.
Cell Assay
Generation of clonal cell lines resistant to IACS-010759[1]
H292 cells (1 × 106 cells/plate) were seeded in 15-cm dishes in galactose growth medium and treated with 1 nM IACS-010759 (IC65) for 3 weeks, followed by exposure to 8 nM IACS-010759 (IC95) until resistant clones emerged. Twenty-six resistant clones were isolated from four independent experiments and were seeded at 5 × 103 cells/well in 96-well plates in 100 µl galactose growth medium. After cells became fully attached, IACS-010759 or rotenone was added to a final concentration of 370 nM to 18 pM for 3 d. Plates were scanned in the IncuCyte live-cell analysis system before analysis via Hoechst and PI. Subsequently, both Hoechst and PI using an Operetta high-content imaging system. RNA-seq was conducted on the parental line and 12 resistant clones, uncovering a single nonsynonymous, heteroplasmic (35–50%), recurrent mutation in the mitochondrial-encoded gene MT-ND1 in 9 of the 12 resistant clones that conferred the L55F (T3469C) amino acid change. Paired-end reads were initially aligned to transcript sequences of complex I genes with Bowtie 2 (ref.53), and the aligned fragments were probabilistically assigned to transcripts using eXpress54. Variants from the reference genome were called using the ‘mpileup’ command in SAMtools. MutPred55 analysis of the L55F variant classifies the alteration as potentially pathogenic (MutPred score = 0.8); this alteration is found at a very low frequency in mtDNA sequences in Genebank (1:30,589 based on full-length mitochondrial genomes deposited in Genebank before 28 October 2015), suggesting it is unlikely to be a polymorphism. The mutation was confirmed in four of the resistant clones by cloning the MT-ND1 gene sequence and analyzing purified plasmid DNA via Sanger sequencing using the following primers: Forward: 5′-GTAAAACGACGGCCAGT-3′ and Reverse: 5′-AACAGCTATGACCATG-3′.
Animal Protocol
10-25 mg/kg; oral; IACS-010759 was formulated in a 0.5% methylcellulose suspension and dosed by oral gavage according to described schedules. [1]
Mice with DLBCL and GBM xenograft models
References
[1]. Jennifer R Molina, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med. 2018 Jul;24(7):1036-1046.
[2]. Protopopova M. IACS-10759: A novel OXPHOS inhibitor which selectively kill tumors with metabolic vulnerabilities. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 4380. doi:10.1158/1538-7445.AM2015-4380.
Additional Infomation
Tumor cells normally depend on both glycolysis and oxidative phosphorylation (OXPHOS) to provide the energy and macromolecule building blocks needed to enable continued tumor cell growth. Genetic or epigenetic inactivation of one of these two redundant pathways represents a metabolic vulnerability that should be susceptible to an inhibitor of the other pathway. Through an extensive medicinal chemistry campaign, IACS-10759 was identified as a potent inhibitor of complex I of oxidative phosphorylation. In isolated mitochondria or permeabilized cells, ATP production or oxygen consumption was inhibited at single digit nM concentrations in the presence of malate/glutamate, but not succinate. More directly, IACS-10759 inhibited the conversion of NADH to NAD+ in an immunoprecipitated complex I assay at low nM concentrations. Using genetic and pharmacological approaches, the specific complex I subunit inhibited by IACS-10759 has been identified and the mechanism of complex I inhibition is being investigated. Importantly, IACS-10759 is orally bioavailable with excellent physicochemical properties in preclinical species and achieved significant in vivo efficacy with daily oral dosing of 10-25 mg/kg. Specifically, there was a >50 day extension of median survival in an orthotopic AML cell line xenograft and robust regression in DLBCL and GBM xenograft models. In light of these results, as well as its drug like profile IACS-10759 has entered IND enabling studies with first-in-human studies targeted for third quarter of 2015.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H26CLF3N6O4S
Molecular Weight
599.03
Exact Mass
598.13768
Elemental Analysis
C, 50.13; H, 4.38; Cl, 5.92; F, 9.51; N, 14.03; O, 10.68; S, 5.35
CAS #
1807523-99-4
Related CAS #
IACS-010759; 1570496-34-2; 1570496-34-2 (HCl); 1807524-00-0 (besylate); 1807524-05-5; 1807524-01-1 (mesylate)
PubChem CID
91864637
Appearance
Typically exists as white to off-white solids at room temperature
tPSA
125Ų
SMILES
Cl.S(C)(C1CCN(C2C=CC=C(CN3C(C)=NC(C4=NC(C5C=CC(=CC=5)OC(F)(F)F)=NO4)=N3)C=2)CC1)(=O)=O
InChi Key
LUSCFOVOISLXTM-UHFFFAOYSA-N
InChi Code
InChI=1S/C25H25F3N6O4S.ClH/c1-16-29-23(24-30-22(32-38-24)18-6-8-20(9-7-18)37-25(26,27)28)31-34(16)15-17-4-3-5-19(14-17)33-12-10-21(11-13-33)39(2,35)36;/h3-9,14,21H,10-13,15H2,1-2H3;1H
Chemical Name
5-(5-methyl-1-(3-(4-(methylsulfonyl)piperidin-1-yl)benzyl)-1H-1,2,4-triazol-3-yl)-3-(4-(trifluoromethoxy)phenyl) -1,2,4-oxadiazolehydrochloride
Synonyms
IACS010759 hydrochloride; IACS-010759; IACS 010759;IACS-10759 HCl; IACS 10759; IACS10759 HCl
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: >60 mg/mL
Water:N/A
Ethanol:N/A
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.17 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.6694 mL 8.3468 mL 16.6937 mL
5 mM 0.3339 mL 1.6694 mL 3.3387 mL
10 mM 0.1669 mL 0.8347 mL 1.6694 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us