yingweiwo

ID-8

Alias: ID-8; ID 8; ID8
Cat No.:V1953 Purity: ≥98%
ID-8 is a novel and potent small molecule DYRK (Dual-specificity tyrosine phosphorylation-regulated kinase) inhibitor that sustains embryonic stem cell self-renewal in long-term culture.
ID-8
ID-8 Chemical Structure CAS No.: 147591-46-6
Product category: DYRK
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

ID-8 is a novel and potent small molecule DYRK (Dual-specificity tyrosine phosphorylation-regulated kinase) inhibitor that sustains embryonic stem cell self-renewal in long-term culture. ID-8 (0.5 μM) increased hESC survival by 1.1% in HES2 cells. Wnt3a and ID-8 together totally blocked Wnt-induced morphological differentiation and raised survival by 1.7%. Additionally, ID-8 dramatically decreased the expression of Wnt-induced differentiation marker genes GATA6, GSC, SOX17, and CDX2. By inhibiting DYRKs, ID-8 promoted Wnt-mediated hESC proliferation and survival in hESCs. Additionally, ID-8 directly targets the DYRK family.

Biological Activity I Assay Protocols (From Reference)
Targets
DYRK
ln Vitro

ID-8 sustains Nanog gene expression through Sox2-Oct3/4 activation, reversibly maintaining the long-term culture of ESCs.[1] ID-8 inhibits DYRKs to improve Wnt-mediated hESC survival and proliferation. Based on the mechanism study, ID-8 enhances the CBP/β-catenin association in hESCs and modulates Wnt/β-catenin signaling to maintain the undifferentiated state in the presence of Wnt.[2]

ln Vivo

Cell Assay
The hESCs in feeder-free culture are, in short, fully dissociated using 0.05% trypsin-EDTA, seeded at 104 cells per well in Matrigel-coated 6-well culture plates, and cultured in MEF-CM. When seeding begins and continues throughout the entire culturing process, different concentrations of Wnt3, IQ-1, ID-8, and/or ICG-001 are added to the culture media. All assays involve a microscope examination of the cell and colony morphology, and a count of the number of colonies after 7 days of culture is used to determine the replating efficiency.
Animal Protocol


References

[1]. Biosci Biotechnol Biochem . 2008 May;72(5):1242-8.

[2]. Stem Cells Transl Med . 2012 Jan;1(1):18-28.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C16H14N2O4
Molecular Weight
298.29
Exact Mass
298.095
Elemental Analysis
C, 64.42; H, 4.73; N, 9.39; O, 21.45
CAS #
147591-46-6
Related CAS #
147591-46-6
PubChem CID
791637
Appearance
Light yellow to yellow solid powder
Density
1.3±0.1 g/cm3
Boiling Point
418.3±45.0 °C at 760 mmHg
Melting Point
266 °C(dec.)
Flash Point
206.8±28.7 °C
Vapour Pressure
0.0±1.0 mmHg at 25°C
Index of Refraction
1.638
LogP
4.13
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
2
Heavy Atom Count
22
Complexity
405
Defined Atom Stereocenter Count
0
SMILES
O([H])C1C([H])=C([H])C2C(=C(C([H])([H])[H])N(C3C([H])=C([H])C(=C([H])C=3[H])OC([H])([H])[H])C=2C=1[H])[N+](=O)[O-]
InChi Key
VVZNWYXIOADGSW-UHFFFAOYSA-N
InChi Code
InChI=1S/C16H14N2O4/c1-10-16(18(20)21)14-8-5-12(19)9-15(14)17(10)11-3-6-13(22-2)7-4-11/h3-9,19H,1-2H3
Chemical Name
1-(4-methoxyphenyl)-2-methyl-3-nitroindol-6-ol
Synonyms
ID-8; ID 8; ID8
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~60 mg/mL (~201.1 mM)
Water: <1 mg/mL
Ethanol: ~2 mg/mL (~6.7 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (8.38 mM) in 10% DMSO + 40% PEG300 +5% Tween-80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 + to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.3524 mL 16.7622 mL 33.5244 mL
5 mM 0.6705 mL 3.3524 mL 6.7049 mL
10 mM 0.3352 mL 1.6762 mL 3.3524 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • ID-8

    A combination of ID-8 and Wnt ligand enhances human embryonic stem cell (hESC) survival and proliferation. Stem Cells Transl Med. 2012 Jan;1(1):18-28.
  • ID-8

    Identification of ID-8 target molecule. Stem Cells Transl Med. 2012 Jan;1(1):18-28.
Contact Us