yingweiwo

Imidapril HCl (TA-6366)

Alias: TA-6366;TA 6366;TA6366;
Cat No.:V1789 Purity: ≥98%
Imidapril HCl (TA-6366; TA-6366; Tanatril), the hydrochloride salt of imidapril,is a potent angiotensin-converting enzyme (ACE) inhibitor with IC50 of 2.6 nM, approved in 1993 for use as an antihypertensive drug and for the treatment of chronic heart failure.
Imidapril HCl (TA-6366)
Imidapril HCl (TA-6366) Chemical Structure CAS No.: 89396-94-1
Product category: RAAS
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Imidapril HCl (TA-6366):

  • Imidapril
  • Imidapril-d3 hydrochloride (Imidapril d3 hydrochloride)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Imidapril HCl (TA-6366; TA-6366; Tanatril), the hydrochloride salt of imidapril, is a potent angiotensin-converting enzyme (ACE) inhibitor with IC50 of 2.6 nM, approved in 1993 for use as an antihypertensive drug and for the treatment of chronic heart failure. As a prodrug, imidapril is converted by hydrolysis in the liver into its active form imidaprilat. Imidaprilat competitively binds to and inhibits ACE, thereby blocking the conversion of angiotensin I to angiotensin II. This prevents the potent vasoconstrictive actions of angiotensin II and results in vasodilation. Imidaprilat also decreases angiotensin II-induced aldosterone secretion by the adrenal cortex, which leads to an increase in sodium excretion and subsequently increases water outflow.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Matrix metalloproteinase (MMP) plays a critical role in the development of ventricular remodeling after acute myocardial infarction (AMI). Imidapril, an angiotensin-converting enzyme inhibitor, has been shown to inhibit MMP activity. We investigated whether imidapril inhibits plasma MMP activities and attenuates ventricular remodeling in patients with AMI in comparison with enalapril. We enrolled 70 patients with AMI. All patients underwent primary percutaneous coronary intervention and were randomly assigned either to imidapril (n = 35) or to enalapril (n = 35) treatment. Left ventriculography was performed in acute (day 14) and chronic (6 months) phases, and plasma MMP-2 and MMP-9 activities were measured by zymography. Any changes in left ventricular end-diastolic volume index and ejection fraction from acute to chronic phases did not differ between the 2 groups. The plasma MMP-2 and MMP-9 activities at day 14 were both significantly decreased compared with those at day 1 in both groups (all P < 0.05). At 6 months, MMP-9 activity still remained decreased in both groups (P < 0.05 vs. day 1). Overall, there were no differences between the 2 groups both in plasma MMP-2 and MMP-9 activities. These results demonstrate that imidapril exerts inhibitory effects on plasma MMP activities and attenuates left ventricular remodeling in patients with AMI similar to enalapril.[1]
References
J Cardiovasc Pharmacol.2014 Jun;63(6):528-32.
Additional Infomation
Imidapril hydrochloride is a dipeptide.
Imidapril Hydrochloride is the hydrochloride salt of imidapril, an angiotensin-converting enzyme (ACE) inhibitor with antihypertensive activity. As a prodrug, imidapril is converted by hydrolysis in the liver into its active form imidaprilat. Imidaprilat competitively binds to and inhibits ACE, thereby blocking the conversion of angiotensin I to angiotensin II. This prevents the potent vasoconstrictive actions of angiotensin II and results in vasodilation. Imidaprilat also decreases angiotensin II-induced aldosterone secretion by the adrenal cortex, which leads to an increase in sodium excretion and subsequently increases water outflow.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H27N3O6.HCL
Molecular Weight
441.91
Exact Mass
441.166
CAS #
89396-94-1
Related CAS #
Imidapril;89371-37-9;Imidapril-d3 hydrochloride;1356017-30-5
PubChem CID
5485193
Appearance
White to off-white solid powder
Boiling Point
577ºC at 760 mmHg
Melting Point
38-42ºC
LogP
1.142
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
10
Heavy Atom Count
30
Complexity
619
Defined Atom Stereocenter Count
3
SMILES
CCOC(=O)[C@H](CCC1=CC=CC=C1)N[C@@H](C)C(=O)N2[C@@H](CN(C2=O)C)C(=O)O.Cl
InChi Key
LSLQGMMMRMDXHN-GEUPQXMHSA-N
InChi Code
InChI=1S/C20H27N3O6.ClH/c1-4-29-19(27)15(11-10-14-8-6-5-7-9-14)21-13(2)17(24)23-16(18(25)26)12-22(3)20(23)28;/h5-9,13,15-16,21H,4,10-12H2,1-3H3,(H,25,26);1H/t13-,15-,16-;/m0./s1
Chemical Name
(4S)-3-[(2S)-2-[[(2S)-1-ethoxy-1-oxo-4-phenylbutan-2-yl]amino]propanoyl]-1-methyl-2-oxoimidazolidine-4-carboxylic acid;hydrochloride
Synonyms
TA-6366;TA 6366;TA6366;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:88 mg/mL (199.1 mM)
Water:54 mg/mL (122.19 mM)
Ethanol:29 mg/mL (65.6 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.66 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.66 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (5.66 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 40 mg/mL (90.52 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2629 mL 11.3145 mL 22.6290 mL
5 mM 0.4526 mL 2.2629 mL 4.5258 mL
10 mM 0.2263 mL 1.1315 mL 2.2629 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us