yingweiwo

Indinavir sulfate

Alias: trade name: Crixivan; DRG-0233; DRG0233; L-735 524 sulfate; DRG 0233; MK-639 sulfate; L 735 524; MK 639; L735 524; MK639;
Cat No.:V4109 Purity: ≥98%
Indinavir sulfate (IDV; formerly known as MK-639;DRG-0233;L735524; trade name Crixivan), the sulfate salt of indinavir, is a potent and specific HIV protease inhibitor with antiviral effects and good oral bioavailability.
Indinavir sulfate
Indinavir sulfate Chemical Structure CAS No.: 157810-81-6
Product category: HIV
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
250mg
500mg
1g
2g
Other Sizes

Other Forms of Indinavir sulfate:

  • Indinavir
  • Indinavir sulfate ethanolate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Indinavir sulfate (IDV; formerly known as MK-639; DRG-0233; L735524; trade name Crixivan), the sulfate salt of indinavir, is a potent and specific HIV protease inhibitor with antiviral effects and good oral bioavailability. Indinavir is used as a component of highly active antiretroviral therapy to treat HIV/AIDS. It is soluble white powder administered orally in combination with other antiviral drugs. The drug prevents protease from functioning normally. Consequently, HIV viruses cannot reproduce, causing a decrease in the viral load. Commercially sold indinavir is indinavir anhydrous, which is indinavir with an additional amine in the hydroxyethylene backbone. This enhances its solubility and oral bioavailability, making it easier for users to intake. It was synthetically produced for the purpose of inhibiting the protease in the HIV virus.

Biological Activity I Assay Protocols (From Reference)
Targets
MMP-2;HIV-1
ln Vitro
Indinavir sulfate (0-50 μM; 18 h) inhibits the G0/G1 phase of the lymphocyte cell cycle in PBMCs and reduces the ability of the cells to proliferate lymphomegaly[1].
In vitro, indinavir sulfate (40 μM–40 nM; 5 days) inhibits Huh7 and SK-HEP-1 hepatocarcinoma cells' ability to invade cells and activate MMPs-2 (40 μM–40 nM; 48 h)[2].
ln Vivo
Indinavir sulfate (70 mg/kg; i.g.; once a day for 3 weeks) inhibits the growth of hepatocarcinoma cells in vivo[2].
Cell Assay
Cell Line: PBMCs (from healthy and HIV-infected volunteers)
Concentration: 0-50 µM
Incubation Time: 18 h (pretreatment; stimulation with anti-CD3 for an additional 48 hours)
Result: Blocked anti-CD3-induced cell-cycle progression in a dose-dependent manner. Resulted in dose-dependent reduction of lymphoproliferative responses.
Animal Protocol
Animal Model: Nude mice(s.c. into Huh7 and SK-HEP-1 cells)[2].
Dosage: 70 mg/kg
Administration: Oral gavage; once a day for 3 weeks.
Result: Delaied the growth of s.c. implanted hepatocarcinoma xenografts in nude mice compared with placebo.
References

[1]. The HIV protease inhibitor Indinavir inhibits cell-cycle progression in vitro in lymphocytes of HIV-infected and uninfected individuals. Blood. 2001 Jul 15;98(2):383-9.

[2]. Evaluation of antitumoral properties of the protease inhibitor indinavir in a murine model of hepatocarcinoma. Clin Cancer Res. 2006 Apr 15;12(8):2634-9.

[3]. Kinetic, stability, and structural changes in high-resolution crystal structures of HIV-1 protease with drug-resistant mutations L24I, I50V, and G73S. J Mol Biol. 2005 Dec 9;354(4):789-800.

[4]. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med Infect Dis. 2020 May-Jun;35:101646.

[5]. AIDS.1996 May;10(5):485-92.

[6]. J Mol Biol.2005 Dec 9;354(4):789-800.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C36H49N5O8S
Molecular Weight
711.87
Exact Mass
711.33
Elemental Analysis
C, 60.74; H, 6.94; N, 9.84; O, 17.98; S, 4.50
CAS #
157810-81-6
Related CAS #
Indinavir;150378-17-9;Indinavir sulfate ethanolate;2563866-80-6
Appearance
Solid powder
SMILES
O=C([C@H]1N(C[C@@H](O)C[C@@H](CC2=CC=CC=C2)C(N[C@@H]3[C@H](O)CC4=C3C=CC=C4)=O)CCN(CC5=CC=CN=C5)C1)NC(C)(C)C.O=S(O)(O)=O
InChi Key
NUBQKPWHXMGDLP-BDEHJDMKSA-N
InChi Code
InChI=1S/C36H47N5O4.H2O4S/c1-36(2,3)39-35(45)31-24-40(22-26-12-9-15-37-21-26)16-17-41(31)23-29(42)19-28(18-25-10-5-4-6-11-25)34(44)38-33-30-14-8-7-13-27(30)20-32(33)43;1-5(2,3)4/h4-15,21,28-29,31-33,42-43H,16-20,22-24H2,1-3H3,(H,38,44)(H,39,45);(H2,1,2,3,4)/t28-,29+,31+,32-,33+;/m1./s1
Chemical Name
(2S)-1-[(2S,4R)-4-benzyl-2-hydroxy-5-[[(1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl]amino]-5-oxopentyl]-N-tert-butyl-4-(pyridin-3-ylmethyl)piperazine-2-carboxamide sulfate
Synonyms
trade name: Crixivan; DRG-0233; DRG0233; L-735 524 sulfate; DRG 0233; MK-639 sulfate; L 735 524; MK 639; L735 524; MK639;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL ( ~140.47 mM )
H2O :~50 mg/mL (~70.24 mM )
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (3.51 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (3.51 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (3.51 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 10% DMSO+40% PEG300+5% Tween-80+45% Saline: ≥ 2.5 mg/mL (3.51 mM)

Solubility in Formulation 5: 100 mg/mL (140.48 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.4048 mL 7.0238 mL 14.0475 mL
5 mM 0.2810 mL 1.4048 mL 2.8095 mL
10 mM 0.1405 mL 0.7024 mL 1.4048 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Indinavir sulfate

    Protease-inhibitor interactions.2005 Dec 9;354(4):789-800.

  • Indinavir sulfate

    The catalytic site of PRL24I–p2/NC at 1.1 Å resolution.2005 Dec 9;354(4):789-800.

  • Indinavir sulfate

    Structural differences at sites of mutation.2005 Dec 9;354(4):789-800.

Contact Us