yingweiwo

Irinotecan HCl Trihydrate

Alias: CPT-11 HCl Trihydrate; CPT11;(+)-Irinotecan; Camptosar; CPT-11; CPT 11;Irinophore C; Campto; Onivyde; Irinotecan; Irinotecan lactone; Irinotecanum
Cat No.:V1410 Purity: ≥98%
Irinotecan HCl trihydrate (formerly CPT-11;CPT 11;Irinophore C; Irinotecan lactone; Irinotecanum), the hydrochloride salt and trihydrated form of irinotecan which is an antitumor drug and a soluble prodrug of SN-38, is a semisynthetic derivative of camptothecin approved for cancer treatment.
Irinotecan HCl Trihydrate
Irinotecan HCl Trihydrate Chemical Structure CAS No.: 136572-09-3
Product category: Topoisomerase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
250mg
500mg
1g
5g
Other Sizes

Other Forms of Irinotecan HCl Trihydrate:

  • Irinotecan hydrochloride
  • Irinotecan (CPT-11)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Irinotecan HCl trihydrate (formerly CPT-11; CPT 11; Irinophore C; Irinotecan lactone; Irinotecanum ), the hydrochloride salt and trihydrated form of irinotecan which is an antitumor drug and a soluble prodrug of SN-38, is a semisynthetic derivative of camptothecin approved for cancer treatment. It suppresses P388 leukemia's ability to proliferate with an IC50 value of 3.4μM. Irinotecan was created to prevent toxicity and boost camptothecin's therapeutic effectiveness.

Biological Activity I Assay Protocols (From Reference)
Targets
Topoisomerase I
ln Vitro

Irinotecan hydrochloride trihydrate is an inhibitor of topoisomerase I. Irinotecan causes comparable amounts of cleavable complexes in both LoVo and HT-29 cells, and it inhibits their growth with IC50s of 15.8 ± 5.1 and 5.17 ± 1.4 μM, respectively[2]. The human umbilical vein endothelial cells' (HUVEC) proliferation is suppressed by irinotecan, with an IC50 of 1.3 μM[3].

ln Vivo
Irinotecan (CPT-11, 5 mg/kg) significantly reduces the growth of tumors when injected intratumorally into rats for five days straight over the course of two weeks. In mice, the same effect is achieved by continuously infusing osmotic minipump fluid intraperitoneally. However, Irinotecan (10 mg/kg) shows no effect on the growth of tumor by i.p[1]. By day 21, it appears that irinotecan (CPT-11, 100–300 mg/kg, i.p.) inhibits the growth of HT-29 xenograft tumors in athymic female mice. Both the Irinotecan (125 mg/kg) plus TSP-1 (10 mg/kg per day) and the Irinotecan (150 mg/kg) plus TSP-1 (20 mg/kg per day) groups are almost as effective as Irinotecan alone, inhibiting tumor growth by 84% and 89%, respectively, at doses of 250 and 300 mg/kg[3].
Cell Assay
In 20 cm2 dishes, exponentially growing cells are seeded with the ideal number of cells for each cell line (20,000 for LoVo cells, 100,000 for HT-29 cells). They receive treatment with irinotecan or SN-38 at increasing concentrations for a single cell doubling period (24 hours for LoVo cells and 40 hours for HT-29 cells) after two days. Following a 0.15 M NaCl wash, the cells are cultured in normal medium for two more doubling times before being separated from the support using trypsin-EDTA and counted using a hemocytometer. Subsequently, the drug concentrations that cause a 50% inhibition of growth in cells treated with the drug are estimated as the IC50 values[2].
Animal Protocol
One cycle of therapy consists of injecting 0.1 cc of the suitable solution intraperitoneally (IV) with irinotecan at a dose of 5 mg/kg per day for 5 days on two consecutive weeks, separated by a 7-day rest period. Over the course of eight weeks, rats receive three cycles. By intratumoral injection, control animals are given 0.1 cc of sterile 0.9% sodium chloride solution according to the same protocol as group II animals[1].
ADME/Pharmacokinetics
Absorption
The maximum plasma concentration (Cmax) when a dose of 125 mg/m^2 is given to patients with solid tumours is 1660 ng/mL. The AUC (0-24) is 10,200 ng·h/mL. The Cmax when a dose of 340 mg/m^2 is given to patients with solid tumours is 3392 ng/mL. The AUC (0-24) is 20,604 ng·h/mL.

Route of Elimination
The cumulative biliary and urinary excretion of irinotecan and its metabolites (SN-38 and SN-38 glucuronide) over a period of 48 hours following administration of irinotecan in two patients ranged from approximately 25% (100 mg/m2) to 50% (300 mg/m2).

Volume of Distribution
The volume of distribution of terminal elimination phase is 110 L/m^2 when a dose of 125 mg/m^2 is given to patients with solid tumours. The volume of distribution of terminal elimination phase is 234 L/m^2 when a dose of 340 mg/m^2 is given to patients with solid tumours.

Clearance
13.3 L/h/m^2 [Dose of 125 mg/m^2, patients with solid tumours]
13.9 L/h/m^2 [Dose of 340 mg/m^2, patients with solid tumours]

View More

Pharmacokinetic parameters for irinotecan and SN-38 were determined in 2 pediatric solid-tumor trials at dose levels of 50 mg/sq m (60-min infusion, n=48) and 125 mg/sq m (90-min infusion, n=6). Irinotecan clearance (mean + or - S.D.) was 17.3 + or - 6.7 L/h/sq m for the 50 mg/sq m dose and 16.2 + or - 4.6 L/h/sq m for the 125 mg/sq m dose, which is comparable to that in adults. Dose-normalized SN-38 AUC values were comparable between adults and children. Minimal accumulation of irinotecan and SN-38 was observed in children on daily dosing regimens (daily X 5 every 3 weeks or (daily X 5) X 2 weeks every 3 weeks).

The clinical pharmacokinetics of irinotecan (CPT11) can be described by a 2 or 3 compartment model, a mean terminal half-life of 12 hours, a volume of distribution at steady state of 168 L/sq m and a total body clearance of 15 L/sq m/hr. Irinotecan is 65% bound to plasma proteins. The areas under the plasma concentration-time curve (AUC) of both irinotecan and active metabolite SN38 increase proportionally to the administered dose, although interpatient variability is important. ... The mean 24 hr irinotecan urinary excretion represents 17-25% of the administered dose, whereas SN38 and its glucuronide recovery in urine is minimal (0.5 and 6%, respectively). Irinotecan and SN38 pharmacokinetics are not influenced by prior exposure to the parent drug. Irinotecan and SN38 AUCs correlate significantly with leuko-neutropenia and sometimes with the intensity of diarrhea. Increased bilirubin levels appear to influence irinotecan total body clearance. PMID:9932079 Bull Cancer (12): 11-20 (1998)


Metabolism / Metabolites
Hepatic. The metabolic conversion of irinotecan to the active metabolite SN-38 is mediated by carboxylesterase enzymes and primarily occurs in the liver. SN-38 is subsequently conjugated predominantly by the enzyme UDP-glucuronosyl transferase 1A1 (UGT1A1) to form a glucuronide metabolite.

... SN38 levels achieved in humans are about 100-fold lower than corresponding irinotecan levels, but these concentrations are important since SN38 is 100- to 1,000-fold more cytotoxic than the parent compound. SN38 is 95% bound to plasma proteins. SN38 plasma decay follows closely that of the parent compound. Irinotecan is extensively metabolized in the liver. The bipiperidinocarbonyloxy group of irinotecan is first removed by a carboxyesterase to yield the corresponding carboxylic acid and SN38. This metabolite can be converted into SN38 glucuronide by UDP-glucuronyltransferase (1.1 isoform). A recently identified metabolite is the 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]-carbonyloxy-camptothecin (APC), which is formed by the action of cytochrome P450 3A4. Numerous other unidentified metabolites are detected in bile and urine. ... PMID:9932079 Bull Cancer (12): 11-20 (1998)

Irinotecan, a camptothecin analogue, is a prodrug which requires bioactivation to form the active metabolite SN-38. SN-38 acts as a DNA topoisomerase I poison. ... Irinotecan is subjected to be shunted between CYP3A4 mediated oxidative metabolism to form two inactive metabolites APC or NPC and tissue carboxylesterase mediated hydrolysis to form SN-38 which is eventually detoxified via glucuronidation by UGT1A1 to form SN-38G. The pharmacology of this compound is further complicated by the existence of genetic inter-individual differences in activation and deactivation enzymes of irinotecan (e.g., CYP3A4, CYP3A5, UGT1A1) and sharing competitive elimination pathways with many concomitant medications, such as anticonvulsants, St. John's Wort, and ketoconazole. Efflux of the parent compound and metabolites out of cells by several drug transporters (e.g., Pgp, BCRP, MRP1, MRP2) also occurs. This review highlights the latest findings in drug activation, transport mechanisms, glucuronidation, and CYP3A-mediated drug-drug interactions of irinotecan in order to unlock some of its complicated pharmacology and to provide ideas for relevant future studies into optimization of this promising agent. PMID:12570720 Ma MK, McLeod HL; Curr Med Chem 10 (1): 41-9 (2003)

Irinotecan serves as a water-soluble precursor of the lipophilic metabolite SN-38. SN-38 is formed from irinotecan by carboxylesterase-mediated cleavage of the carbamate bond between the camptothecin moiety and the dipiperidino side chain. SN-38 is approximately 1000 times as potent as irinotecan as an inhibitor of topoisomerase I purified from human and rodent tumor cell lines. In vitro cytotoxicity assays show that the potency of SN-38 relative to irinotecan varies from 2- to 2000-fold. However, the plasma area under the concentration versus time curve (AUC) values for SN-38 are 2% to 8% of irinotecan and SN-38 is 95% bound to plasma proteins compared to approximately 50% bound to plasma proteins for irinotecan. The precise contribution of SN-38 to the activity of Camptosar is thus unknown. Both irinotecan and SN-38 exist in an active lactone form and an inactive hydroxy acid anion form. A pH-dependent equilibrium exists between the two forms such that an acid pH promotes the formation of the lactone, while a more basic pH favors the hydroxy acid anion form. Thomson Health Care Inc.; Physicians' Desk Reference 62 ed., Montvale, NJ 2008, p. 2594

The metabolic conversion of irinotecan to the active metabolite SN-38 is mediated by carboxylesterase enzymes and primarily occurs in the liver. SN-38 is subsequently conjugated predominantly by the enzyme UDP-glucuronosyl transferase 1A1 (UGT1A1) to form a glucuronide metabolite. UGT1A1 activity is reduced in individuals with genetic polymorphisms that lead to reduced enzyme activity such as the UGT1A1*28 polymorphism. Approximately 10% of the North American population is homozygous for the UGT1A1*28 allele. In a prospective study, in which irinotecan was administered as a single-agent on a once-every-3-week schedule, patients who were homozygous for UGT1A1*28 had a higher exposure to SN-38 than patients with the wild-type UGT1A1 allele. SN-38 glucuronide had 1/50 to 1/100 the activity of SN-38 in cytotoxicity assays using two cell lines in vitro. The disposition of irinotecan has not been fully elucidated in humans. The urinary excretion of irinotecan is 11% to 20%; SN-38, <1%; and SN-38 glucuronide, 3%. The cumulative biliary and urinary excretion of irinotecan and its metabolites (SN-38 and SN-38 glucuronide) over a period of 48 hours following administration of irinotecan in two patients ranged from approximately 25% (100 mg/sq m) to 50% (300 mg/sq m). Thomson Health Care Inc.; Physicians' Desk Reference 62 ed., Montvale, NJ 2008, p. 2594

Irinotecan has known human metabolites that include 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxycamptothecin and (2S,3S,4S,5R)-6-[[(19S)-10,19-diethyl-14,18-dioxo-7-(4-piperidin-1-ylpiperidine-1-carbonyl)oxy-17-oxa-3,13-diazapentacyclo[11.8.0.02,11.04,9.015,20]henicosa-1(21),2,4(9),5,7,10,15(20)-heptaen-19-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid. S73 | METXBIODB | Metabolite Reaction Database from BioTransformer | DOI:10.5281/zenodo.4056560
Biological Half-Life
The half life of irinotecan is about 6 - 12 hours. The terminal elimination half-life of the active metabolite, SN-38 is 10 - 20 hours.

After intravenous infusion of irinotecan in humans, irinotecan plasma concentrations decline in a multiexponential manner, with a mean terminal elimination half-life of about 6 to 12 hours. The mean terminal elimination half-life of the active metabolite SN-38 is about 10 to 20 hours. The half-lives of the lactone (active) forms of irinotecan and SN-38 are similar to those of total irinotecan and SN-38, as the lactone and hydroxy acid forms are in equilibrium.

Toxicity/Toxicokinetics
Protein Binding: 30%-68% protein bound, mainly to albumin.
Rat LD50 oral 867 mg/kg
Interactions
A total of 190 patients (49 smokers, 141 nonsmokers) treated with irinotecan (90-minute intravenous administration on a 3-week schedule) were evaluated for pharmacokinetics. Complete toxicity data were available in a subset of 134 patients receiving 350 mg/sq m or 600 mg flat-fixed dose irinotecan. In smokers, the dose-normalized area under the plasma concentration-time curve of irinotecan was significantly lower (median, 28.7 v 33.9 ng x hr/mL/mg; P = .001) compared with nonsmokers. In addition, smokers showed an almost 40% lower exposure to SN-38 (median, 0.54 v 0.87 ng x h/mL/mg; P < .001) and a higher relative extent of glucuronidation of SN-38 into SN-38G (median, 6.6 v 4.5; P = .006). Smokers experienced considerably less hematologic toxicity. In particular, the incidence of grade 3 to 4 neutropenia was 6% in smokers versus 38% in nonsmokers (odds ratio [OR], 0.10; 95% CI, 0.02 to 0.43; P < .001). There was no significant difference in incidence of delayed-onset diarrhea (6% v 15%; OR, 0.34; 95% CI, 0.07 to 1.57; P = .149). This study indicates that smoking significantly lowers both the exposure to irinotecan and treatment-induced neutropenia, indicating a potential risk of treatment failure. Although the underlying mechanism is not entirely clear, modulation of CYP3A and uridine diphosphate glucuronosyltransferase isoform 1A1 may be part of the explanation. The data suggest that additional investigation is warranted to determine whether smokers are at increased risk for treatment failure. PMID:17563393 van der Bol JM et al; J Clin Oncol 25 (19): 2719-26 (2007)

The coadministration of protease inhibitors with anticancer drugs in the management of human immunodeficiency virus-related malignancies can cause potential drug-drug interactions. The effect of lopinavir/ritonavir (LPV/RTV) on the pharmacokinetics of irinotecan (CPT11) has been investigated in seven patients with Kaposi's sarcoma. Coadministration of LPV/RTV reduces the clearance of CPT11 by 47% (11.3+/-3.5 vs 21.3+/-6.3 l/h/m(2), P=0.0008). This effect was associated with an 81% reduction (P=0.02) of the AUC (area under the curve) of the oxidized metabolite APC (7-ethyl-10-[4-N-(5-aminopentanoic-acid)-1-piperidino]-carbonyloxycamptothecin). The LPV/RTV treatment also inhibited the formation of SN38 glucuronide (SN38G), as shown by the 36% decrease in the SN38G/SN38 AUCs ratio (5.9+/-1.6 vs 9.2+/-2.6, P=0.002) consistent with UGT1A1 inhibition by LPV/RTV. This dual effect resulted in increased availability of CPT11 for SN38 conversion and reduced inactivation on SN38, leading to a 204% increase (P=0.0001) in SN38 AUC in the presence of LPV/RTV. The clinical consequences of these substantial pharmacokinetic changes should be investigated. PMID:17713471
References

[1]. Antitumoral effect of irinotecan (CPT-11) on an experimental model of malignant neuroectodermal tumor. J Neurooncol. 2002 Feb;56(3):219-26.

[2]. Determinants of the cytotoxicity of irinotecan in two human colorectal tumor cell lines. Cancer Chemother Pharmacol. 2002 Apr;49(4):329-35. Epub 2002 Jan 30.

[3]. Thrombospondin-1 plus irinotecan: a novel antiangiogenic-chemotherapeutic combination that inhibits the growth of advanced human colon tumor xenografts in mice. Cancer Chemother Pharmacol. 2004 Mar;53(3):261-6. Epub 2003 Dec 5.

Additional Infomation
Irinotecan hydrochloride hydrate is a hydrate that is the trihydrate form of irinotecan hydrochloride. Onivyde is used in combination with fluorouracil and leucovorin, for the treatment of patients with metastatic adenocarcinoma of the pancreas after disease progression following gemcitabine-based therapy. It is converted via hydrolysis of the carbamate linkage to its active metabolite, SN-38, which is ~1000 times more active. It has a role as an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an antineoplastic agent, an apoptosis inducer and a prodrug. It contains an irinotecan hydrochloride (anhydrous).
Irinotecan Hydrochloride is the hydrochloride salt of a semisynthetic derivative of camptothecin, a cytotoxic, quinoline-based alkaloid extracted from the Asian tree Camptotheca acuminata. Irinotecan, a prodrug, is converted to a biologically active metabolite 7-ethyl-10-hydroxy-camptothecin (SN-38) by a carboxylesterase-converting enzyme. One thousand-fold more potent than its parent compound irinotecan, SN-38 inhibits topoisomerase I activity by stabilizing the cleavable complex between topoisomerase I and DNA, resulting in DNA breaks that inhibit DNA replication and trigger apoptotic cell death. Because ongoing DNA synthesis is necessary for irinotecan to exert its cytotoxic effects, it is classified as an S-phase-specific agent.
A semisynthetic camptothecin derivative that inhibits DNA TOPOISOMERASE I to prevent nucleic acid synthesis during S PHASE. It is used as an antineoplastic agent for the treatment of COLORECTAL NEOPLASMS and PANCREATIC NEOPLASMS.
Drug Indication
Treatment of metastatic adenocarcinoma of the pancreas, in combination with 5 fluorouracil (5 FU) and leucovorin (LV), in adult patients who have progressed following gemcitabine based therapy.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C33H45CLN4O9
Molecular Weight
677.18
Exact Mass
676.287
Elemental Analysis
C, 58.53; H, 6.70; Cl, 5.23; N, 8.27; O, 21.26
CAS #
136572-09-3
Related CAS #
136572-09-3(HCl trihydrate); 100286-90-6 (HCl); 143490-53-3 (Lactone Impurity) ; 97682-44-5; 1329502-92-2 (Carboxylate Sodium Salt)
PubChem CID
60837
Appearance
Yellow solid powder
Boiling Point
873.4ºC at 760 mmHg
Melting Point
250-256ºC (dec.)
Flash Point
482ºC
LogP
4.576
Hydrogen Bond Donor Count
5
Hydrogen Bond Acceptor Count
11
Rotatable Bond Count
5
Heavy Atom Count
47
Complexity
1200
Defined Atom Stereocenter Count
1
SMILES
Cl[H].O(C1C([H])=C([H])C2=C(C=1[H])C(C([H])([H])C([H])([H])[H])=C1C(C3=C([H])C4=C(C([H])([H])OC([C@@]4(C([H])([H])C([H])([H])[H])O[H])=O)C(N3C1([H])[H])=O)=N2)C(N1C([H])([H])C([H])([H])C([H])(C([H])([H])C1([H])[H])N1C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H])=O.O([H])[H].O([H])[H].O([H])[H]
InChi Key
KLEAIHJJLUAXIQ-JDRGBKBRSA-N
InChi Code
InChI=1S/C33H38N4O6.ClH.3H2O/c1-3-22-23-16-21(43-32(40)36-14-10-20(11-15-36)35-12-6-5-7-13-35)8-9-27(23)34-29-24(22)18-37-28(29)17-26-25(30(37)38)19-42-31(39)33(26,41)4-2;;;;/h8-9,16-17,20,41H,3-7,10-15,18-19H2,1-2H3;1H;3*1H2/t33-;;;;/m0..../s1
Chemical Name
[(19S)-10,19-diethyl-19-hydroxy-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.02,11.04,9.015,20]henicosa-1(21),2,4(9),5,7,10,15(20)-heptaen-7-yl] 4-piperidin-1-ylpiperidine-1-carboxylate;trihydrate;hydrochloride
Synonyms
CPT-11 HCl Trihydrate; CPT11;(+)-Irinotecan; Camptosar; CPT-11; CPT 11;Irinophore C; Campto; Onivyde; Irinotecan; Irinotecan lactone; Irinotecanum
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 50~100 mg/mL (73.8~147.7 mM)
Water: <1 mg/mL
Ethanol: ~7 mg/mL (~10.3 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (3.69 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (3.69 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: 2.5 mg/mL (3.69 mM) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 30% Propylene glycol , 5% Tween 80 , 65% D5W: 30 mg/mL

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.4767 mL 7.3836 mL 14.7671 mL
5 mM 0.2953 mL 1.4767 mL 2.9534 mL
10 mM 0.1477 mL 0.7384 mL 1.4767 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02192359 Active
Recruiting
Drug: Irinotecan Hydrochloride
Drug: Irinotecan
Recurrent Glioblastoma
Recurrent Gliosarcoma
City of Hope Medical Center March 7, 2016 Phase 1
NCT00045201 Active
Recruiting
Drug: Erlotinib Hydrochloride
Drug: Irinotecan Hydrochloride
Adult Solid Neoplasm National Cancer Institute
(NCI)
June 13, 2002 Phase 1
NCT03290937 Active
Recruiting
Drug: Irinotecan Hydrochloride
Biological: Cetuximab
Metastatic Colorectal Carcinoma
Stage IV Colorectal Cancer
AJCC v8
M.D. Anderson Cancer Center December 27, 2017 Phase 1
NCT03794349 Recruiting Drug: Irinotecan Hydrochloride
Biological: Dinutuximab
High Risk Neuroblastoma
Recurrent Neuroblastoma
Children's Oncology Group July 8, 2019 Phase 2
NCT00576654 Active
Recruiting
Drug: Irinotecan Hydrochloride
Drug: Veliparib
Hodgkin Lymphoma
Non-Hodgkin Lymphoma
National Cancer Institute
(NCI)
December 5, 2007 Phase 1
Contact Us