yingweiwo

Ivabradine

Cat No.:V44031 Purity: ≥98%
Ivabradine is a potent and orally bioactive HCN (hyperpolarization-activated cyclic nucleotide-gated) channel blocker that can inhibit cardiac pacemaker currents (If).
Ivabradine
Ivabradine Chemical Structure CAS No.: 155974-00-8
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Ivabradine:

  • Ivabradine HCl (Procoralan)
  • Ivabradine-d6 hydrochloride
  • Ivabradine D3 HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Ivabradine is a potent and orally bioactive HCN (hyperpolarization-activated cyclic nucleotide-gated) channel blocker that can inhibit cardiac pacemaker currents (If). Ivabradine concentration-dependently reduces heart rate without altering blood pressure. Ivabradine has anticonvulsant (antiepileptic/antiseizure), antiischemic, and antianginal activities.
Biological Activity I Assay Protocols (From Reference)
ln Vivo
In mice, ivabradine (1, 10, 20 mg/kg; i.p.) exhibits neuroprotective and anticonvulsant properties [3]. In mice with elevated sympathetic adrenergic activity, ivabradine (5, 10, 20 mg/kg; oral; once daily for 1 week) lowers heart rate [4].
Animal Protocol
Animal/Disease Models: 25-30 g, 6weeks old male Swiss mice [3]
Doses: 1, 10, 20 mg/kg
Route of Administration: intraperitoneal (ip) injection; continued for 3 days
Experimental Results: Attenuated PTZ and PICRO-induced seizures, while Antioxidant effects were present in all studied brain regions and diminished the expression of cleaved caspase-3 in the CA1 and DG regions of PICRO- and PTZ-treated mice, respectively.

Animal/Disease Models: 3-4 month old transgenic (TG) mice with cardiac restriction overexpressing b2AR[4]
Doses: 5, 10, 20 mg/kg
Route of Administration: Oral; one time/day for 1 week
Experimental Results: diminished Maximal HR increased in response to 10 mg/kg beta agonist isoproterenol without changing contractile parameters in response.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
It is recommended to take ivabradine with food to reduce variability in systemic exposure. Administration with food slows absorption by 1 hour, but increases systemic absorption by 20-30%. Ivabradine's oral bioavailability is about 40%.
Metabolites are equally excreted in feces and urine.
~100 L.
Total clearance is about 400ml/min; renal clearance about 70ml/min. About 4% is excreted unchanged in urine.
Metabolism / Metabolites
Ivabradine is extensively metabolized by oxidation in the gut and liver by cytochrome P450 3A4 enzyme. Its active metabolite, N-desmethylated derivative, is also metabolized by CYP 3A4. Ivabradine's affinity for CYP 3A4 is low, making it unlikely to affect the metabolism of other drugs; however potent inhibitors or inducers of CYP 3A4 may affect ivabradine's plasma concentration and pharmacodynamic effects and should not be co-administered.
Biological Half-Life
2 hours.
Toxicity/Toxicokinetics
Hepatotoxicity
In large preregistration clinical trials, similar proportions of patients taking ivabradine as taking placebo developed ALT elevations [15% vs 17%] while ALT elevations above 5 times the upper limit of normal were uncommon [
Likelihood score: E (unlikely cause of clinically apparent liver injury).
Protein Binding
70% bound to plasma proteins.
References

[1]. Efficacy of ivabradine, a new selective I(f) inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J. 2005 Dec;26(23):2529-36.

[2]. Heart rate slowing for myocardial dysfunction/heart failure. Adv Cardiol. 2006;43:97-105.

[3]. Ivabradine possesses anticonvulsant and neuroprotective action in mice. Biomed Pharmacother. 2019 Jan;109:2499-2512.

[4]. I(f) channel inhibitor ivabradine lowers heart rate in mice with enhanced sympathoadrenergic activities. Br J Pharmacol. 2004 May;142(1):107-12.

Additional Infomation
Ivabradine is a member of the class of benzazepines that is 7,8-dimethoxy-1,3,4,5-tetrahydro-3-benzazepin-2-one in which the amide hydrogen is replaced by a [{[(7S)-3,4-dimethoxybicyclo[4.2.0]octa-1,3,5-trien-7-yl]methyl}(methyl)amino]propyl} group. Used (as its hydrochloride salt) to treat patients with angina who have intolerance to beta blockers and/or heart failure. It has a role as a cardiotonic drug. It is a benzazepine, a tertiary amino compound, a carbobicyclic compound and an aromatic ether. It is a conjugate base of an ivabradine(1+).
Ivabradine is a novel heart rate lowering medicine for the symptomatic management of stable angina pectoralis and symptomatic chronic heart failure. Ivabradine, brand name Corlanor, was approved by the FDA in April 2015 for the treatment of chronic heart failure in patients with an ejection fraction of ≤35%, in sinus rhythm with resting heart rate ≥70 beats per minute, who are not on beta-blockers due to contraindications or already receiving maximum beta-blocker dose. Recently a new indication was added to treat symptomatic heart failure from dilated cardiomyopathy for patients 6 months or more in age. Ivabradine acts by selectively inhibiting the "funny" channel pacemaker current (If) in the sinoatrial node in a dose-dependent fashion, resulting in a lower heart rate and thus more blood to flow to the myocardium. Although non-dihydropyridine calcium channel blockers and beta blockers also effectively lower heart rate, they exhibit adverse events due to their negative ionotropic effects. Therefore, as ivabradine is designed as a "pure" heart rate-lowering drug by selectively acting on the If channels, it may offer a more favorable side effect profile due to its lower likelihood of causing serious adverse effects.
Ivabradine is a Hyperpolarization-activated Cyclic Nucleotide-gated Channel Blocker. The mechanism of action of ivabradine is as a Hyperpolarization-activated Cyclic Nucleotide-gated Channel Antagonist.
Ivabradine is a small molecule inhibitor of the If ion channel which is used to decrease the heart rate in patients with symptomatic heart failure who have a resting heart rate above 70 beats per minute despite optimal doses or intolerance of beta blockers. Ivabradine has not been associated with serum enzyme elevations during therapy or with instances of clinically apparent liver injury.
Ivabradine is an orally bioavailable, hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel blocker, with negative chronotropic activity. Upon administration, ivabradine selectively binds to the intracellular portion of the HCN channel pore and blocks HCN channels in the pacemaker cells within the sinoatrial (SA) node. This inhibits the If (funny) pacemaker ion current, prevents the inward flow and intracellular accumulation of positively charged ions, reduces pacemaker activity and slows diastolic depolarization. This decreases heart rate, reduces myocardial oxygen demand and allows more time for blood to flow to the myocardium without affecting cardiac contractility. HCN channels, mixed sodium (Na+) and potassium (K+) channels that carry the inward If current, play a key role in the regulation of pacemaker firing rate in the SA node. The If pacemaker current, the inward flow of positively charged Na+-K+ ions, initiates the spontaneous diastolic depolarization phase and modulating heart rate.
A benzazepine derivative and selective HYPERPOLARIZATION-ACTIVATED CYCLIC NUCLEOTIDE-GATED CHANNELS inhibitor that lowers the heart rate. It is used in the treatment of CHRONIC STABLE ANGINA in patients unable to take BETA-ADRENERGIC BLOCKERS, and in the treatment of HEART FAILURE.
See also: Ivabradine Hydrochloride (active moiety of).
Drug Indication
Ivabradine is indicated by the FDA to reduce the risk of hospitalization for worsening heart failure in adult patients with stable, symptomatic chronic heart failure with left ventricular ejection fraction ≤35%, who are in sinus rhythm with resting heart rate ≥70 beats per minute and either are on maximally tolerated doses of beta-blockers or have a contraindication to beta-blocker use. It is also indicated for treatment of stable symptomatic heart failure as a result of dilated cardiomyopathy for pediatric patients 6 months of age or more.
FDA Label
Symptomatic treatment of chronic stable angina pectoris Ivabradine is indicated for the symptomatic treatment of chronic stable angina pectoris in coronary artery disease adults with normal sinus rhythm and heart rate ≥ 70 bpm. Ivabradine is indicated: in adults unable to tolerate or with a contra-indication to the use of beta-blockersorin combination with beta-blockers in patients inadequately controlled with an optimal beta-blocker dose. Treatment of chronic heart failure Ivabradine is indicated in chronic heart failure NYHA II to IV class with systolic dysfunction, in patients in sinus rhythm and whose heart rate is ≥ 75 bpm, in combination with standard therapy including beta-blocker therapy or when beta-blocker therapy is contraindicated or not tolerated.
Symptomatic treatment of chronic stable angina pectorisIvabradine is indicated for the symptomatic treatment of chronic stable angina pectoris in coronary artery disease adults with normal sinus rhythm and heart rate ≥ 70 bpm. Ivabradine is indicated: in adults unable to tolerate or with a contra-indication to the use of beta-blockersor in combination with beta-blockers in patients inadequately controlled with an optimal betablocker dose. Treatment of chronic heart failureIvabradine is indicated in chronic heart failure NYHA II to IV class with systolic dysfunction, in patients in sinus rhythm and whose heart rate is ≥ 75 bpm, in combination with standard therapy including beta-blocker therapy or when beta-blocker therapy is contraindicated or not tolerated.
Symptomatic treatment of chronic stable angina pectorisIvabradine is indicated for the symptomatic treatment of chronic stable angina pectoris in coronary artery disease adults with normal sinus rhythm and heart rate ≥ 70 bpm. Ivabradine is indicated : - in adults unable to tolerate or with a contra-indication to the use of beta-blockers- or in combination with beta-blockers in patients inadequately controlled with an optimal beta-blocker dose. Treatment of chronic heart failureIvabradine is indicated in chronic heart failure NYHA II to IV class with systolic dysfunction, in patients in sinus rhythm and whose heart rate is ≥ 75 bpm, in combination with standard therapy including beta-blocker therapy or when beta-blocker therapy is contraindicated or not tolerated. (see section 5. 1)
Symptomatic treatment of chronic stable angina pectorisIvabradine is indicated for the symptomatic treatment of chronic stable angina pectoris in coronary artery disease adults with normal sinus rhythm and heart rate ≥ 70 bpm. Ivabradine is indicated: in adults unable to tolerate or with a contraindication to the use of beta-blockersor in combination with beta-blockers in patients inadequately controlled with an optimal beta-blocker dose. Treatment of chronic heart failureIvabradine is indicated in chronic heart failure NYHA II to IV class with systolic dysfunction, in patients in sinus rhythm and whose heart rate is ≥ 75 bpm, in combination with standard therapy including beta-blocker therapy or when beta-blocker therapy is contraindicated or not tolerated.
Symptomatic treatment of chronic stable angina pectoris Ivabradine is indicated for the symptomatic treatment of chronic stable angina pectoris in coronary artery disease adults with normal sinus rhythm and heart rate ≥ 70 bpm. Ivabradine is indicated : in adults unable to tolerate or with a contraindication to the use of beta-blockersor in combination with beta-blockers in patients inadequately controlled with an optimal beta-blocker dose. Treatment of chronic heart failure Ivabradine is indicated in chronic heart failure NYHA II to IV class with systolic dysfunction, in patients in sinus rhythm and whose heart rate is ≥ 75 bpm, in combination with standard therapy including beta-blocker therapy or when beta-blocker therapy is contraindicated or not tolerated.
Symptomatic treatment of chronic stable angina pectoris in coronary artery disease adults with normal sinus rhythm and heart rate ≥ 70 bpm. Ivabradine is indicated: - in adults unable to tolerate or with a contra-indication to the use of beta-blockers - or in combination with beta-blockers in patients inadequately controlled with an optimal beta-blocker dose. Treatment of chronic heart failure Ivabradine is indicated in chronic heart failure NYHA II to IV class with systolic dysfunction, in patients in sinus rhythm and whose heart rate is ≥ 75 bpm, in combination with standard therapy including beta-blocker therapy or when beta-blocker therapy is contraindicated or not tolerated. ,
Mechanism of Action
Ivabradine lowers heart rate by selectively inhibiting If channels ("funny channels") in the heart in a concentration-dependent manner without affecting any other cardiac ionic channels (including calcium or potassium). Ivabradine binds by entering and attaching to a site on the channel pore from the intracellular side and disrupts If ion current flow, which prolongs diastolic depolarization, lowering heart rate. The If currents are located in the sinoatrial node and are the home of all cardiac pacemaker activity. Ivabradine therefore lowers the pacemaker firing rate, consequently lowering heart rate and reducing myocardial oxygen demand. This allows for an improved oxygen supply and therefore mitigation of ischemia, allowing for a higher exercise capacity and reduction in angina episodes.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C27H36N2O5
Molecular Weight
468.59
Exact Mass
468.262
CAS #
155974-00-8
Related CAS #
Ivabradine hydrochloride;148849-67-6;Ivabradine-d6 hydrochloride;2070009-63-9;Ivabradine-d3 hydrochloride;1217809-61-4;Ivabradine-d6
PubChem CID
132999
Appearance
Typically exists as solid at room temperature
Density
1.1±0.1 g/cm3
Boiling Point
626.9±55.0 °C at 760 mmHg
Flash Point
332.9±31.5 °C
Vapour Pressure
0.0±1.8 mmHg at 25°C
Index of Refraction
1.560
LogP
3.69
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
10
Heavy Atom Count
34
Complexity
663
Defined Atom Stereocenter Count
1
SMILES
CN(CCCN1CCC2=CC(=C(C=C2CC1=O)OC)OC)C[C@H]3CC4=CC(=C(C=C43)OC)OC
InChi Key
ACRHBAYQBXXRTO-OAQYLSRUSA-N
InChi Code
InChI=1S/C27H36N2O5/c1-28(17-21-11-20-14-25(33-4)26(34-5)16-22(20)21)8-6-9-29-10-7-18-12-23(31-2)24(32-3)13-19(18)15-27(29)30/h12-14,16,21H,6-11,15,17H2,1-5H3/t21-/m1/s1
Chemical Name
3-[3-[[(7S)-3,4-dimethoxy-7-bicyclo[4.2.0]octa-1,3,5-trienyl]methyl-methylamino]propyl]-7,8-dimethoxy-2,5-dihydro-1H-3-benzazepin-4-one
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1341 mL 10.6703 mL 21.3406 mL
5 mM 0.4268 mL 2.1341 mL 4.2681 mL
10 mM 0.2134 mL 1.0670 mL 2.1341 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us