yingweiwo

(+)-JQ1 carboxylic acid

Alias: (+)-JQ-1 carboxylic acid;(+)-JQ 1 carboxylic acid;(+)-JQ1 carboxylic acid; 202592-23-2; JQ-1 carboxylic acid; JQ-1 (carboxylic acid); (+)-JQ1 carboxylic acid; JQ1 Carboxylic Acid; 6H-Thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine-6-acetic acid, 4-(4-chlorophenyl)-2,3,9-trimethyl-, (6S)-; (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetic acid; 2-[(9S)-7-(4-chlorophenyl)-4,5,13-trimethyl-3-thia-1,8,11,12-tetrazatricyclo[8.3.0.02,6]trideca-2(6),4,7,10,12-pentaen-9-yl]acetic acid;
Cat No.:V3740 Purity: ≥98%
(+)-JQ1 carboxylic acid is the free carboxylic acid (COOH) form of (+)-JQ1 (tert-Butyl ester form-COOtBu).
(+)-JQ1 carboxylic acid
(+)-JQ1 carboxylic acid Chemical Structure CAS No.: 202592-23-2
Product category: Epigenetic Reader Domain
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of (+)-JQ1 carboxylic acid:

  • (+)-JQ1
  • (-)-JQ-1
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

(+)-JQ1 carboxylic acid is the free carboxylic acid (COOH) form of (+)-JQ1 (tert-Butyl ester form-COOtBu). (+)-JQ1 is a potent and highly specific BET (Bromodomain and extra terminal domain) bromodomain inhibitor, with IC50 of 77 nM and 33 nM for BRD4(1/2) in enzymatic assays. (−)-JQ1 shows no significant interaction with any bromodomain. Besides, (−)-JQ1 enantiomer is comparatively inactive in nuclear protein in testis (NUT) midline carcinoma (NMC). (+)-JQ1 has high specificity for BET in that it only binds to bromodomains of the BET family, but not to any bromodomains of non-BET family. (+)-JQ1 has potential antineoplastic activity against various cancers such as MM (Multiple myeloma), pancreatic ductal adenocarcinoma and ovarian cancer etc. Its mechanism of action is to inhibit c-MYC and upregulate p21. (+)-JQ1 has been used as a chemical probe to investigate the role of BET bromodomains in the transcriptional regulation of oncogenesis.

Biological Activity I Assay Protocols (From Reference)
Targets
BET/bromodomain and extra terminal domain
ln Vitro
On the surface of B16F10 cells, JQ-1 carboxylic acid reduces the expression of PD-L1 [1].
ln Vivo
(+)-JQ1 (50 mg/kg) inhibits tumors growth in mice with NMC 797 xenografts. (+)-JQ1 (50 mg/kg) results in effacement of NUT nuclear speckles in mice with NMC 797 xenografts, consistent with competitive binding to nuclear chromatin. (+)-JQ1 (50 mg/kg) induces strong (grade 31) keratin expression in NMC 797 xenografts. (+)-JQ1 (50 mg/kg) promotes differentiation, tumor regression and prolonged survival in mice models of NMC xenografts. (+)-JQ1 (50 mg/kg) results in a significant prolongation in overall survival of SCID-beige mice orthotopically xenografted after intravenous injection with MM.1S-luc+ cells compared to vehicle-treated animals. (+)-JQ1 (50 mg/kg i.p.) leads to a highly significant increase in survival of mice bearing Raji xenografts.
Animal Protocol
In vivo formulations used (reported):
1. Dissolved in 5% dextrose; 50 mg/kg; i.p. injection; Nature. 2010 Dec 23;468(7327):1067-73
2. Dissolved in 10% DMSO and 90% of a 10% 2-hydroxypropyl-β-cyclodextrin solution; Leukemia. 2017 Oct;31(10):2037-2047
3. Dissolved in 1% DMSO+5% Glucose+ddH2O; Cell. 2018 Sep 20;175(1):186-199.e19
4. Dissolved in 20% hydroxypropyl-β-cyclodextrin, 5% DMSO, 0.2% Tween-80 in saline; Mol Cancer Ther. 2016 Jun;15(6):1217-26
5. Dissolved in 1:1 propylene glycol:water; J Biol Chem. 2016 Nov 4;291(45):23756-23768
6. Dissolved in 5% DMSO in 10% 2-hydroxypropyl-β-cyclodextrin solution; Cancer Lett. 2017 Aug 28;402:100-109
References

[1]. Design, Synthesis, and Evaluation of Trivalent PROTACs Having a Functionalization Site with Controlled Orientation. Bioconjug Chem. 2022 Jan 19;33(1):142-151.

[2]. Dual drugs decorated bacteria irradiate deep hypoxic tumor and arouse strong immune responses. Biomaterials. 2022 Jul;286:121582.

Additional Infomation
Trivalent PROTACs having a functionalization site with controlled orientation were designed, synthesized, and evaluated. Based on the X-ray structure of BRD protein degrader MZ1 (1) in complex with human VHL and BRD4BD2, we expected that the 1,2-disubstituted ethyl group near the JQ-1 moiety in MZ1 (1) could be replaced by a planar benzene tether as a platform for further functionalization. To test this hypothesis, we first designed six divalent MZ1 derivatives, 2a-c and 3a-c, by combining three variations of substitution patterns on the benzene ring (1,2-, 1,3-, and 1,4-substitution) and two variations in the number of ethylene glycol units (2 or 1). We then tested the synthesized compounds for the BRD4 degradation activity of each. As expected, we found that 1,2D-EG2-MZ1 (2a), an MZ1 derivative with 1,2-disubstituted benzene possessing two ethylene glycol units, had an activity profile similar to that of MZ1 (1). Based on the structure of 2a, we then synthesized and evaluated four isomeric trivalent MZ1 derivatives, 15a-15d, having a tert-butyl ester unit on the benzene ring as a handle for further functionalization. Among the four isomers, 1,2,5T-EG2-MZ1 (15c) retained a level of BRD4 depletion activity similar to that of 2a without inducing a measurable Hook effect, and its BRD4 depletion kinetics was the same as that of MZ1 (1). Other isomers were also shown to retain BRD4 depletion activity. Thus, the trivalent PROTACs we synthesized here may serve as efficient platforms for further applications.[1]
Intratumoral environment as a hypoxic, non-inflamed "cold" state is difficult for many agents to accumulate and activate the immune system. Intrinsically, facultative anaerobic Salmonella VNP20009 target the tumor hypoxic areas, invade into tumor cells and exhibit an immune effect. Here we engineer the bacteria by decorating their surface with newly synthesized heptamethine cyanine dyes NHS-N782 and JQ-1 derivatives to obtain the biohybrid agent N-V-J, leading to the deep tumor targeted photothermal therapy and magnified immunotherapy. Due to the mitochondrial targeting capacity of NHS-N782, N-V-J becomes susceptive to the temperature rise when reaching tumors. This synergistic strategy promotes the systemic immunity by creating an inflamed "hot" tumor state from three different dimensions, which include the inherent immunogenicity of bacteria, the near-infrared laser triggered tumor antigens and the downregulation of PD-L1 expression. All these approaches result in effective and long-lasting T cell immune responses to prevent local and distant tumors for extended time. Leveraging the attenuated bacteria to transport dual drugs to the tumor tissues for self-synthetic vaccines provides a novel paradigm to enhance the bacteria-mediated cancer immunotherapy.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H17CLN4O2S
Molecular Weight
400.88
Exact Mass
400.076
Elemental Analysis
C, 56.93; H, 4.27; Cl, 8.84; N, 13.98; O, 7.98; S, 8.00
CAS #
202592-23-2
Related CAS #
(+)-JQ-1;1268524-70-4;(R)-(-)-JQ1 Enantiomer; 1268524-71-5; 202592-23-2 (free); 1426257-60-4 (HCl); 2069219-37-8 (TFA); 2230314-61-9 (xTFA);
PubChem CID
66828107
Appearance
Typically exists as Off-white to yellow solids
Density
1.5±0.1 g/cm3
Boiling Point
661.6±65.0 °C at 760 mmHg
Flash Point
353.9±34.3 °C
Vapour Pressure
0.0±2.1 mmHg at 25°C
Index of Refraction
1.737
LogP
2.79
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
3
Heavy Atom Count
27
Complexity
613
Defined Atom Stereocenter Count
1
SMILES
ClC1C([H])=C([H])C(=C([H])C=1[H])C1C2C(C([H])([H])[H])=C(C([H])([H])[H])SC=2N2C(C([H])([H])[H])=NN=C2C([H])(C([H])([H])C(=O)O[H])N=1
InChi Key
LJOSBOOJFIRCSO-AWEZNQCLSA-N
InChi Code
InChI=1S/C19H17ClN4O2S/c1-9-10(2)27-19-16(9)17(12-4-6-13(20)7-5-12)21-14(8-15(25)26)18-23-22-11(3)24(18)19/h4-7,14H,8H2,1-3H3,(H,25,26)/t14-/m0/s1
Chemical Name
2-[(9S)-7-(4-chlorophenyl)-4,5,13-trimethyl-3-thia-1,8,11,12-tetrazatricyclo[8.3.0.02,6]trideca-2(6),4,7,10,12-pentaen-9-yl]acetic acid
Synonyms
(+)-JQ-1 carboxylic acid;(+)-JQ 1 carboxylic acid;(+)-JQ1 carboxylic acid; 202592-23-2; JQ-1 carboxylic acid; JQ-1 (carboxylic acid); (+)-JQ1 carboxylic acid; JQ1 Carboxylic Acid; 6H-Thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine-6-acetic acid, 4-(4-chlorophenyl)-2,3,9-trimethyl-, (6S)-; (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetic acid; 2-[(9S)-7-(4-chlorophenyl)-4,5,13-trimethyl-3-thia-1,8,11,12-tetrazatricyclo[8.3.0.02,6]trideca-2(6),4,7,10,12-pentaen-9-yl]acetic acid;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: >120 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.24 mM) (saturation unknown) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (6.24 mM) (saturation unknown) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 1.39 mg/mL (3.47 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 13.9 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.


Solubility in Formulation 4: ≥ 1.39 mg/mL (3.47 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 13.9 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 5: ≥ 1.39 mg/mL (3.47 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 13.9 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4945 mL 12.4726 mL 24.9451 mL
5 mM 0.4989 mL 2.4945 mL 4.9890 mL
10 mM 0.2495 mL 1.2473 mL 2.4945 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • (+)-JQ1 carboxylic acid

    Leukemia and lymphoma cell lines are broadly sensitive to BET-bromodomain inhibition.2011 Oct 4;108(40):16669-74.

  • (+)-JQ1 carboxylic acid

    Gene expression profiling of LP-1 and Raji cells treated with active or inactive BET inhibitors.2011 Oct 4;108(40):16669-74.

  • (+)-JQ1 carboxylic acid

    Small molecule BET-bromodomain inhibition suppressesMYCtranscription.2011 Oct 4;108(40):16669-74.

  • (+)-JQ1 carboxylic acid

    MYC reconstitution significantly protects cells from BET-mediated effects.2011 Oct 4;108(40):16669-74.

  • (+)-JQ1 carboxylic acid

    BET-bromodomain inhibition decreases tumor load in vivo.2011 Oct 4;108(40):16669-74.

  • (+)-JQ1 carboxylic acid

    Integrated genomic rationale for BET bromodomains as therapeutic targets in MM.2011 Sep 16;146(6):904-17.

  • (+)-JQ1 carboxylic acid

    Inhibition of Myc-dependent transcription by theJQ1BET bromodomain inhibitor.2011 Sep 16;146(6):904-17.

  • (+)-JQ1 carboxylic acid

    BET inhibition suppressesMYCtranscription in MM.2011 Sep 16;146(6):904-17.

  • (+)-JQ1 carboxylic acid

    Regulation ofMYCtranscription by BET bromodomains.2011 Sep 16;146(6):904-17.

  • (+)-JQ1 carboxylic acid

    Anti-myeloma activity ofJQ1in vitro.2011 Sep 16;146(6):904-17.

  • (+)-JQ1 carboxylic acid

    JQ1induces cell cycle arrest and cellular senescence in MM cells.2011 Sep 16;146(6):904-17.

  • (+)-JQ1 carboxylic acid

    Translational implications of BET bromodomain inhibition in MM.2011 Sep 16;146(6):904-17.

  • (+)-JQ1 carboxylic acid

  • (+)-JQ1 carboxylic acid

  • (+)-JQ1 carboxylic acid

Contact Us