Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
Other Sizes |
|
ln Vitro |
In a concentration-dependent manner, KB-5492 (0.001-100 μM) inhibits selective [3H]DTG binding [1]. The increase in 51Cr release from gastric epithelial cells generated by ethanol and acidified aspirin was considerably and concentration-dependently inhibited by KB-5492 (0.1-1 mM) [2].
|
---|---|
ln Vivo |
KB-5492 (200 mg/kg; oral) inhibits the stomach mucosa from developing macroscopic lesions [2].
|
Animal Protocol |
Animal/Disease Models: Male SD (SD (Sprague-Dawley)) rats, body weight 210-240 g, induced gastric mucosal damage [2]
Doses: 200 mg/kg Route of Administration: po (oral gavage) Experimental Results: Compared with the control, the lesion length was shortened. Prevent deep mucosal lesions and surface epithelial cell shedding. |
References |
|
Molecular Formula |
C27H34N2O10
|
---|---|
Molecular Weight |
546.57
|
Exact Mass |
546.221
|
CAS # |
129200-10-8
|
Related CAS # |
KB-5492 free base;113594-64-2
|
PubChem CID |
6439276
|
Appearance |
White to off-white solid powder
|
Boiling Point |
553.2ºC at 760 mmHg
|
Flash Point |
288.3ºC
|
Vapour Pressure |
2.8E-12mmHg at 25°C
|
LogP |
2.031
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
12
|
Rotatable Bond Count |
12
|
Heavy Atom Count |
39
|
Complexity |
639
|
Defined Atom Stereocenter Count |
0
|
SMILES |
COC1=CC=C(C=C1)OC(=O)CN2CCN(CC2)CC3=CC(=C(C(=C3)OC)OC)OC.C(=C/C(=O)O)\C(=O)O
|
InChi Key |
JUOYRBCKLAPYBI-WLHGVMLRSA-N
|
InChi Code |
InChI=1S/C23H30N2O6.C4H4O4/c1-27-18-5-7-19(8-6-18)31-22(26)16-25-11-9-24(10-12-25)15-17-13-20(28-2)23(30-4)21(14-17)29-3;5-3(6)1-2-4(7)8/h5-8,13-14H,9-12,15-16H2,1-4H3;1-2H,(H,5,6)(H,7,8)/b;2-1+
|
Chemical Name |
(E)-but-2-enedioic acid;(4-methoxyphenyl) 2-[4-[(3,4,5-trimethoxyphenyl)methyl]piperazin-1-yl]acetate
|
Synonyms |
KB5492; KB-5492; KB 5492
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~250 mg/mL (~457.40 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.08 mg/mL (3.81 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.08 mg/mL (3.81 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.08 mg/mL (3.81 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. Solubility in Formulation 4: ≥ 2.08 mg/mL (3.81 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Solubility in Formulation 5: ≥ 2.08 mg/mL (3.81 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly. Solubility in Formulation 6: ≥ 2.08 mg/mL (3.81 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.8296 mL | 9.1480 mL | 18.2959 mL | |
5 mM | 0.3659 mL | 1.8296 mL | 3.6592 mL | |
10 mM | 0.1830 mL | 0.9148 mL | 1.8296 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.