yingweiwo

KB 5492

Alias: KB5492; KB-5492; KB 5492
Cat No.:V23150 Purity: ≥98%
KB-5492 anhydrous is a potent and specific sigma receptor blocker/inhibitor that can suppress/disrupts the binding of [3H]1,3-di(2-tolyl)guanidine (DTG) to sigma receptors with IC50 of 3.15 μM.
KB 5492
KB 5492 Chemical Structure CAS No.: 129200-10-8
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes

Other Forms of KB 5492:

  • KB-5492 free base
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
KB-5492 anhydrous is a potent and specific sigma receptor blocker/inhibitor that can suppress/disrupts the binding of [3H]1,3-di(2-tolyl)guanidine (DTG) to sigma receptors with IC50 of 3.15 μM. KB-5492 anhydrous is an anti-ulcer agent.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
In a concentration-dependent manner, KB-5492 (0.001-100 μM) inhibits selective [3H]DTG binding [1]. The increase in 51Cr release from gastric epithelial cells generated by ethanol and acidified aspirin was considerably and concentration-dependently inhibited by KB-5492 (0.1-1 mM) [2].
ln Vivo
KB-5492 (200 mg/kg; oral) inhibits the stomach mucosa from developing macroscopic lesions [2].
Animal Protocol
Animal/Disease Models: Male SD (SD (Sprague-Dawley)) rats, body weight 210-240 g, induced gastric mucosal damage [2]
Doses: 200 mg/kg
Route of Administration: po (oral gavage)
Experimental Results: Compared with the control, the lesion length was shortened. Prevent deep mucosal lesions and surface epithelial cell shedding.
References

[1]. Receptor binding profiles of KB-5492, a novel anti-ulcer agent, at sigma receptors in guinea-pig brain. Eur J Pharmacol. 1994 May 2; 256(3): 321-8.

[2]. Effects of KB-5492, a new anti-ulcer agent, on ethanol- and acidified aspirin-induced gastric mucosal damage in vivo and in vitro. Jpn J Pharmacol. 1994 Jan; 64(1): 41-7.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C27H34N2O10
Molecular Weight
546.57
Exact Mass
546.221
CAS #
129200-10-8
Related CAS #
KB-5492 free base;113594-64-2
PubChem CID
6439276
Appearance
White to off-white solid powder
Boiling Point
553.2ºC at 760 mmHg
Flash Point
288.3ºC
Vapour Pressure
2.8E-12mmHg at 25°C
LogP
2.031
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
12
Rotatable Bond Count
12
Heavy Atom Count
39
Complexity
639
Defined Atom Stereocenter Count
0
SMILES
COC1=CC=C(C=C1)OC(=O)CN2CCN(CC2)CC3=CC(=C(C(=C3)OC)OC)OC.C(=C/C(=O)O)\C(=O)O
InChi Key
JUOYRBCKLAPYBI-WLHGVMLRSA-N
InChi Code
InChI=1S/C23H30N2O6.C4H4O4/c1-27-18-5-7-19(8-6-18)31-22(26)16-25-11-9-24(10-12-25)15-17-13-20(28-2)23(30-4)21(14-17)29-3;5-3(6)1-2-4(7)8/h5-8,13-14H,9-12,15-16H2,1-4H3;1-2H,(H,5,6)(H,7,8)/b;2-1+
Chemical Name
(E)-but-2-enedioic acid;(4-methoxyphenyl) 2-[4-[(3,4,5-trimethoxyphenyl)methyl]piperazin-1-yl]acetate
Synonyms
KB5492; KB-5492; KB 5492
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~250 mg/mL (~457.40 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (3.81 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (3.81 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (3.81 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.


Solubility in Formulation 4: ≥ 2.08 mg/mL (3.81 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 5: ≥ 2.08 mg/mL (3.81 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

Solubility in Formulation 6: ≥ 2.08 mg/mL (3.81 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8296 mL 9.1480 mL 18.2959 mL
5 mM 0.3659 mL 1.8296 mL 3.6592 mL
10 mM 0.1830 mL 0.9148 mL 1.8296 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us