Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Purity: ≥98%
KD-3010 (KD3010) tosylate is a potent, orally bioactive, and selective agonist of peroxisome proliferator-activated receptor delta (PPARδ) that can be potentially used for the treatment of diabetes and obesity. Peroxisome proliferator-activated receptor delta (PPARδ), a member of the nuclear receptor family, is emerging as a key metabolic regulator with pleiotropic actions on various tissues including fat, skeletal muscle, and liver. PPARδ agonist KD3010, but not the well-validated GW501516, dramatically ameliorates liver injury induced by carbon tetrachloride (CCl(4)) injections. Deposition of extracellular matrix proteins was lower in the KD3010-treated group than in the vehicle- or GW501516-treated group. Interestingly, profibrogenic connective tissue growth factor was induced significantly by GW501516, but not by KD3010, following CCl(4) treatment. The hepatoprotective and antifibrotic effect of KD3010 was confirmed in a model of cholestasis-induced liver injury and fibrosis using bile duct ligation for 3 wk. Primary hepatocytes treated with KD3010 but not GW501516 were protected from starvation or CCl(4)-induced cell death, in part because of reduced reactive oxygen species production. In conclusion, the data demonstrate that an orally active PPARδ agonist has hepatoprotective and antifibrotic effects in animal models of liver fibrosis, suggesting a possible mechanistic and therapeutic approach in treating patients with chronic liver diseases.
Targets |
|
|
---|---|---|
ln Vivo |
Mice are given either the well-validated PPARδ agonist GW501516 or the PPARδ agonist KD-3010 orally to see if PPARδ agonists are helpful in experimental liver fibrosis. KD-3010 has hepatoprotective and antifibrotic effects in liver fibrosis caused by bile duct ligation (BDL) or carbon tetrachloride (CCl4), but not GW501516. Repeated injections of CCl4 cause liver injury, and mice are treated with vehicle, the commonly used PPARδ agonist GW501516, or the PPARδ agonist KD-3010 via oral gavage every day. Mice given control oil injections do not exhibit any liver damage. On H&E-stained liver sections, the vehicle- or GW501516-treated group injected with CCl4 showed liver injury consisting of hepatocyte mortality and inflammation; however, this was significantly lessened in the KD3010-treated group[1].
|
|
References |
CAS # |
934760-90-4
|
---|---|
Related CAS # |
934760-90-4;888326-24-7;
|
Appearance |
Typically exists as solid at room temperature
|
InChi Key |
SUTQDFLDQUPTKX-QVLMFNNZSA-N
|
InChi Code |
InChI=1S/C23H25F3N2O5S.C7H8O3S/c1-14-12-27(18-6-8-19(9-7-18)33-23(24,25)26)13-15(2)28(14)34(31,32)21-5-3-4-16-10-17(22(29)30)11-20(16)21;1-6-2-4-7(5-3-6)11(8,9)10/h3-9,14-15,17H,10-13H2,1-2H3,(H,29,30);2-5H,1H3,(H,8,9,10)/t14-,15+,17?;
|
Chemical Name |
4-(((2S,6R)-2,6-dimethyl-4-(4-(trifluoromethoxy)phenyl)piperazin-1-yl)sulfonyl)-2,3-dihydro-1H-indene-2-carboxylic acid compound with 4-methylbenzenesulfonic acid (1:1)
|
Synonyms |
KD3010 tosylate; KD-3010; KD 3010
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.