Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
Purity: ≥98%
KN-93 HCl is a potent, cell-permeable, reversible and specific inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII) with Ki of 0.37 μM, and with no remarkable inhibitory effects on APK, PKC, MLCK or Ca2+-PDE activities. KN-93 suppresses ventricular arrhythmia induced by LQT2 without decreasing TDR. KN-93 inhibits androgen receptor activity and induces cell death irrespective of p53 and Akt status in prostate cancer. KN-93 ameliorates levodopa-induced dyskinesia in a rat model of Parkinson's disease. KN-93 protects rat cerebral cortical neurons from N-methyl-D-aspartic acid-induced injury.
ln Vitro |
Upon two days of treatment with KN-93 hydrochloride, 95 percent of the cells were in the G1 phase. G1 arrest is reversible, and cells peak into the S and G2-M phases one day after KN-93 hydrochloride is released. KN-93 hydrochloride also inhibits the proliferation of NIH 3T3 fibroblasts in response to basic fibroblast growth factor, platelet-derived growth factor-BB, and epidermal growth factor [1]. While KN-93 hydrochloride strongly dissipates the proton gradient produced in stomach membrane vesicles and decreases cavity volume, it inhibits the action of H+ and K+-ATPase [2]. KN-93 hydrochloride (0.5 μM) inhibits the development of stress elevations in LV during early afterdepolarization and action potential lengthening. Early afterdepolarization is characterized by a rise in Ca2+-independent CaM kinase activity, which is inhibited by KN-93 hydrochloride [3].
|
||
---|---|---|---|
ln Vivo |
|
||
Animal Protocol |
|
||
References |
|
Molecular Formula |
C26H30CL2N2O4S
|
|
---|---|---|
Molecular Weight |
537.5
|
|
Exact Mass |
536.13
|
|
CAS # |
1956426-56-4
|
|
Related CAS # |
KN-93;139298-40-1;KN-93 phosphate;1913269-12-1
|
|
PubChem CID |
73425340
|
|
Appearance |
White to off-white solid powder
|
|
Hydrogen Bond Donor Count |
2
|
|
Hydrogen Bond Acceptor Count |
6
|
|
Rotatable Bond Count |
11
|
|
Heavy Atom Count |
35
|
|
Complexity |
713
|
|
Defined Atom Stereocenter Count |
0
|
|
SMILES |
CN(C/C=C/C1=CC=C(C=C1)Cl)CC2=CC=CC=C2N(CCO)S(=O)(=O)C3=CC=C(C=C3)OC.Cl
|
|
InChi Key |
ATHMCQDBXQEIOK-IPZCTEOASA-N
|
|
InChi Code |
InChI=1S/C26H29ClN2O4S.ClH/c1-28(17-5-6-21-9-11-23(27)12-10-21)20-22-7-3-4-8-26(22)29(18-19-30)34(31,32)25-15-13-24(33-2)14-16-25;/h3-16,30H,17-20H2,1-2H3;1H/b6-5+
|
|
Chemical Name |
N-[2-[N-(4-Chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide hydrochloride
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.65 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (4.65 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (4.65 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.8605 mL | 9.3023 mL | 18.6047 mL | |
5 mM | 0.3721 mL | 1.8605 mL | 3.7209 mL | |
10 mM | 0.1860 mL | 0.9302 mL | 1.8605 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.