Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
Purity: ≥98%
L-778123 (L778123) hydrochloride is a novel and potent inhibitor of FPTase (Farnesyl:protein transferase) and GGPTase-I (geranylgeranyl:protein transferase type-I) (IC50 = 2 nM and 98 nM) with anticancer activity. L-778123 can completely inhibit Ki-Ras prenylation. The combination of L-778,123 and radiotherapy at dose level 1 showed acceptable toxicity in patients with locally advanced pancreatic cancer. Radiosensitization of a patient-derived pancreatic cancer cell line was observed.
ln Vitro |
L778123 showed weak cytotoxic activity with IC50 of 100 and 125 for A549 and HT-29 cell lines, respectively. The combination of doxorubicin and L778123 can decrease IC50 of doxorubicin in both cell lines significantly.[2]
FTI L-778,123 substantially inhibited myeloid leukemia cell proliferation as quantified by MTS assays with IC50 values ranging from 0.2 μM–1.8 μM for cell lines and 0.1 μM–161.8 μM in primary samples. [3] L-778,123 induced a G2M blockade followed by apoptosis in NB-4 (FAB M3) cells. Western blotting demonstrated that blockade of RAS protein prenylation by L-778,123 was both time- and concentration-dependent. H-RAS prenylation in HL-60 cells was almost completely inhibited within 12 hours of treatment with 0.1, 0.5 or 1 μM L-778,123, and by 6 hours with 5 μM of the drug.[3] Western blotting and FACS analysis showed that L-778,123 also inhibited phosphorylation of MEK-1/2 and MAPK-1/2, down-stream components of the RAS-to-MAPK signaling cascade. Treatment of HL-60 cells with L-778,123 (5 μM, 24 hours) led to approximately 40–50% lower levels of intracellular phosphorylated MEK-1/2. Similarly, L-778,123 treatment caused both time- and concentration-dependent reduction of activated, diphosphorylated MAPK-1/2 levels. Higher L-778,123 concentrations (0.5, 1 and 5 μM) potently decreased diphosphorylated MAPK-1/2 levels within 6 to 12 hours, while a lower drug concentration (0.1 μM) elicited similar effects after 36 to 48 hours.[3] The effect of L-778,123 on T cell activation (CD71 or CD25 surface expression) was determined by flow cytometry. Peripheral blood mononuclear cell (PBMC) proliferation in the presence of L-778,123 and/or cyclosporine (CsA) was determined by [3H]thymidine incorporation. The ability of L-778,123 to inhibit IL-2 receptor signaling was investigated by measuring IL-2 induced proliferation in CTLL-2 cells and IL-2 prevention of apoptosis in activated human PBMC. L-778,123 inhibited lectin induced expression of CD71 and CD25 with IC50's of 6.48 +/- 1.31 microM and 84.1 +/- 50.0 microM, respectively. PBMC proliferation was inhibited by L-778,123 with an IC50 of 0.92 +/- 0.23 microM, and addition of CsA did not increase the potency. L-778,123 did not inhibit IL-2 and IFN-gamma production by T cells. L-778,123 abrogated IL-2 induced proliferation of CTLL-2 cells with an IC50 of 0.81 +/- 0.44 microM. However, L-778,123 minimally reversed the prosurvival effect of IL-2 in activated lymphocytes. IL-2 ligand and receptor production during T cell activation are relatively unaffected by L-778,123. However, the activation and proliferative effects of IL-2 on T cells are potently blocked by L-778,123. [4] |
---|---|
References |
|
Additional Infomation |
L-778,123 hydrochloride is the hydrochloride salt of L-778,123. It is a dual inhibitor of FPTase and GGPTase-I (IC50 of 2nM and 98nm, respectively) and exhibits anti-cancer properties. It has a role as an antineoplastic agent, an EC 2.5.1.58 (protein farnesyltransferase) inhibitor, an EC 2.5.1.59 (protein geranylgeranyltransferase type I) inhibitor and a radiosensitizing agent. It contains a L-778,123 (free base).
Farnesyltransferase/Geranylgeranyltransferase Inhibitor L-778,123 is a benzonitrile derivative capable of inhibiting some prenyltransferases. L-778,123 is a dual inhibitor of farnesyl:protein and geranylgeranyl:protein transferases; both enzymes catalyze prenylation of oncoprotein KRAS, a prerequisite step in activation of KRAS in signal transduction pathway of apoptosis. Although this agent was developed in part as an anti-KRAS agent, L-778,123 failed in a Phase I trial to inhibit KRAS, which is associated with many types of solid tumors. |
Molecular Formula |
C22H20N5OCL.HCL
|
---|---|
Molecular Weight |
442.34104
|
Exact Mass |
441.112
|
CAS # |
253863-00-2
|
Related CAS # |
L-778123;183499-57-2
|
PubChem CID |
216453
|
Appearance |
White to off-white solid powder
|
Boiling Point |
698.9ºC at 760 mmHg
|
Flash Point |
376.5ºC
|
Vapour Pressure |
2.22E-19mmHg at 25°C
|
LogP |
4.11
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
4
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
30
|
Complexity |
614
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
YNBSQYGTJLIPJS-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C22H20ClN5O.ClH/c23-19-2-1-3-20(10-19)28-9-8-26(15-22(28)29)14-21-12-25-16-27(21)13-18-6-4-17(11-24)5-7-18;/h1-7,10,12,16H,8-9,13-15H2;1H
|
Chemical Name |
4-((5-((4-(3-chlorophenyl)-3-oxopiperazin-1-yl)methyl)-1H-imidazol-1-yl)methyl)benzonitrile dihydrochloride
|
Synonyms |
L778123 HCl; L-778,123; L 778,123 HCl; L-778123; L 778123; L778,123; L-778123 hydrochloride
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ≥ 25 mg/mL (~56.52 mM)
H2O : ~25 mg/mL (~56.52 mM) |
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.25 mg/mL (5.09 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 22.5 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.25 mg/mL (5.09 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 22.5 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.25 mg/mL (5.09 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. Solubility in Formulation 4: 100 mg/mL (226.07 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), suspension solution; Need ultrasonic and adjust pH to 5 with 1M HCl. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.2607 mL | 11.3035 mL | 22.6070 mL | |
5 mM | 0.4521 mL | 2.2607 mL | 4.5214 mL | |
10 mM | 0.2261 mL | 1.1304 mL | 2.2607 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.