yingweiwo

Lafutidine (FRG-8813)

Alias: FRG-8813; Lafutidine; FRG8813; 118288-08-7; 206449-93-6; rac Lafutidine; FRG-8813; (Z)-Lafutidine; Lafutidine [INN]; Lafutidine [JAN]; FRG 8813; trade name: Protecadin; Stogar
Cat No.:V1235 Purity: ≥98%
Lafutidine (formerly FRG-8813; FRG8813; trade name: Protecadin; Stogar) is a 2nd-generationhistamine H2 receptor antagonist used to treat gastric ulcers, duodenal ulcers, and wounds in the stomach associated with chronic gastritis.
Lafutidine (FRG-8813)
Lafutidine (FRG-8813) Chemical Structure CAS No.: 118288-08-7
Product category: Histamine Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
250mg
500mg
1g
2g
Other Sizes

Other Forms of Lafutidine (FRG-8813):

  • (Z)-Lafutidine ((Z)-FRG-8813)
  • Lafutidine-d10
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Lafutidine (formerly FRG-8813; FRG8813; trade name: Protecadin; Stogar) is a 2nd-generation histamine H2 receptor antagonist used to treat gastric ulcers, duodenal ulcers, and wounds in the stomach associated with chronic gastritis. Lafutidine works by preventing the stomach acid from being secreted. It has been sold in India and Japan.

Biological Activity I Assay Protocols (From Reference)
Targets
Histamine H2 receptor
ln Vitro

In vitro activity: Lafutidine has a strong antisecretory effect in addition to a protective effect on the gastric mucosa mediated by afferent neurons sensitive to capsaicin[2]. Lafutidine (0.1-10 µM) in rat perfused mesenteric vascular beds significantly increases the vasodilation induced by periarterial nerve stimulation (PNS, 1 Hz) in a concentration-dependent manner[2].

ln Vivo
Lafutidine (3-30 mg/kg; p.o.; twice daily; for 6 days) significantly mitigates changes in colon length and myeloperoxidase (MPO) activity, and reduces the severity of colitis induced by dextran sulfate Na (DSS) in a dose-dependent manner[3].
Lafutidine is a histamine H(2)-receptor antagonist with gastric antisecretory and gastroprotective activity associated with activation of capsaicin-sensitive nerves. The present study examined the effect of lafutidine on neurotransmission of capsaicin-sensitive calcitonin gene-related peptide (CGRP)-containing vasodilator nerves (CGRPergic nerves) in rat mesenteric resistance arteries. Rat mesenteric vascular beds were perfused with Krebs solution and vascular endothelium was removed by 30-s perfusion with sodium deoxycholate. In preparations preconstricted by continuous perfusion of methoxamine (alpha(1) adrenoceptor agonist), perfusion of lafutidine (0.1 - 10 microM) concentration-dependently augmented vasodilation induced by the periarterial nerve stimulation (PNS, 1 Hz) without affecting vasodilation induced by exogenous CGRP (10 pmol) injection. Perfusion of famotidine (H(2)-receptor antagonist, 1 - 100 microM) had no effect on either PNS-induced or CGRP-induced vasodilation. Perfusion of lafutidine concentration-dependently augmented vasodilation induced by a bolus injection of capsaicin (vanilloid-1 receptor agonist, 30 pmol). The presence of a vanilloid-1 receptor antagonist, ruthenium red (10 microM) or capsazepine (5 microM), abolished capsaicin-induced vasodilation and significantly decreased the PNS-induced vasodilation. The decreased PNS-induced vasodilation by ruthenium red or capsazepine was not affected by perfusion of lafutidine. These results suggest that lafutidine facilitates CGRP nerve-mediated vasodilation by modulating the function of presynaptic vanilloid-1 receptors located in CGRPergic nerves [2].
Cell Assay
Lafutidine, a histamine H(2) receptor antagonist, exerts gastroprotective effects in addition to gastric antisecretory activity. The gastrointestinal protective effects of lafutidine are mediated by capsaicin-sensitive neurons, where capsaicin excites neurons by opening a member of the transient receptor potential channel family (TRPV1). Since the effect of lafutidine on the intracellular Ca(2+) concentration ([Ca(2+)](i)) in cells has not been elucidated, we investigated the lafutidine response to [Ca(2+)](i) in rat pheochromocytoma PC12 and human endothelial cells. Lafutidine at pharmacological concentrations greater than 1 mM induced a sustained increase in [Ca(2+)](i) in the presence of extracellular CaCl(2) in PC12 cells, while capsaicin showed dual effects on [Ca(2+)](i) in PC12 cells, where it activated TRPV1 and inhibited store-operated Ca(2+) entry. The thapsigargin (an activator of store-operated Ca(2+) entry)-induced increase in [Ca(2+)](i) in PC12 cells was inhibited by capsaicin and SKF96365, an inhibitor of store-operated Ca(2+) entry, and the lafutidine response was inhibited by capsaicin but not by SKF96365. In endothelial cells, lafutidine induced an increase in [Ca(2+)](i) in a SKF96365-insensitive manner. These results suggest that lafutidine stimulates Ca(2+) entry via the capsaicin-sensitive pathway but not the SKF96365-sensitive pathway. The possible role of store-operated Ca(2+) entry induced by lafutidine on gastrointestinal function is also discussed [4].
Animal Protocol
Male Wistar rats (180-200 g)
3 mg/kg, 10 mg/kg, 30 mg/kg
Oral administration, twice daily, for 6 days
The ligation of both the pylorus and the forestomach of SD rats under anesthesia caused hemorrhagic lesions in the esophageal mucosa at 6 h. Lesion formation was significantly inhibited by treatment with H(2)RAs, including the conventional H(2)RAs famotidine and cimetidine as well as lafutidine. The maximum suppressive abilities of these agents were similar to that of the proton pump inhibitor lansoprazole. Interestingly, unlike famotidine, lafutidine at low doses significantly suppressed esophagitis without inhibiting gastric acid secretion. Note that neither lafutidine nor famotidine inhibited hexosamine output in gastric juice samples obtained 3 h after ligation. Additionally, the protective effect of lafutidine, but not of famotidine, was partly attenuated by the denervation of capsaicin-sensitive afferent nerves with a large dose of capsaicin. [1]
Toxicity/Toxicokinetics
rat LD50 oral 1248 mg/kg BEHAVIORAL: ALTERED SLEEP TIME (INCLUDING CHANGE IN RIGHTING REFLEX); BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD; GASTROINTESTINAL: CHANGES IN STRUCTURE OR FUNCTION OF SALIVARY GLANDS Oyo Yakuri. Pharmacometrics., 50(143), 1995
rat LD50 intravenous 84 mg/kg BEHAVIORAL: SOMNOLENCE (GENERAL DEPRESSED ACTIVITY); BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD; LUNGS, THORAX, OR RESPIRATION: RESPIRATORY DEPRESSION Oyo Yakuri. Pharmacometrics., 50(143), 1995
mouse LD50 oral 1034 mg/kg BEHAVIORAL: SOMNOLENCE (GENERAL DEPRESSED ACTIVITY); BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD; LUNGS, THORAX, OR RESPIRATION: RESPIRATORY DEPRESSION Oyo Yakuri. Pharmacometrics., 50(143), 1995
mouse LD50 intravenous 47900 ug/kg BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD; LUNGS, THORAX, OR RESPIRATION: RESPIRATORY DEPRESSION Oyo Yakuri. Pharmacometrics., 50(143), 1995
dog LD oral >400 mg/kg BEHAVIORAL: TREMOR; BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD; GASTROINTESTINAL: NAUSEA OR VOMITING Oyo Yakuri. Pharmacometrics., 50(417), 1995
References

[1]. Possible involvement of host defense mechanism in the suppression of rat acute reflux esophagitis by the particular histamine H2 receptor antagonist lafutidine. Pharmacology. 2012;90(3-4):205-11.

[2]. TLafutidine facilitates calcitonin gene-related peptide (CGRP) nerve-mediated vasodilation via vanilloid-1 receptors in rat mesenteric resistance arteries. J Pharmacol Sci. 2008 Mar;106(3):505-11.

[3]. Protective effect of lafutidine, a novel histamine H2-receptor antagonist, on dextran sulfate sodium-induced colonic inflammation through capsaicin-sensitive afferent neurons in rats. Dig Dis Sci. 2004 Oct;49(10):1696-704.

[4]. Lafutidine-induced increase in intracellular ca(2+) concentrations in PC12 and endothelial cells. J Pharmacol Sci. 2005 Jan;97(1):67-74.

Additional Infomation
Lafutidine is an organic molecular entity.
Lafutidine has been investigated in Peptic Ulcer, Community-acquired Pneumonia, and Gastroesophageal Reflux Disease (GERD).
Lafutidine, a histamine H2-receptor antagonist, exhibits gastric mucosal protective action mediated by capsaicin-sensitive afferent neurons, in addition to a potent antisecretory effect. In this study we examined the effect of lafutidine on dextran sulfate Na (DSS)-induced ulcerative colitis in rats, in relation to capsaicin-sensitive afferent neurons. Experimental colitis was induced in rats by daily treatment with 3% DSS in drinking water for 7 days. Lafutidine, capsaicin, and cimetidine were administered per os twice daily for 6 days. The ulceration area, colon length, and myeloperoxidase (MPO) activity were measured on day 7 after the onset of DSS treatment. DSS caused severe mucosal lesions in the colon, accompanied by an increase in MPO activity as well as a decrease in body weight gain and colon length. Daily administration of lafutidine dose-dependently reduced the severity of DSS-induced colitis and significantly mitigated changes in the colon length and MPO activity. The effects of lafutidine were mimicked by daily administration of capsaicin but not cimetidine and were totally abolished by chemical ablation of capsaicin-sensitive afferent neurons. In contrast, desensitization of afferent neurons significantly worsened the colonic inflammation induced by DSS. It was also found that both lafutidine and capsaicin increased the secretion of mucus in the colonic mucosa. These results suggest that lafutidine is effective against the ulcerative colitis induced by DSS through capsaicin-sensitive afferent neurons. This action might be attributable at least partly to the enhancement of colonic mucus secretion. [3]
Gastroesophageal reflux disease is considered to be caused primarily by gastric juice refluxed into the esophagus. Here, we investigated the possible involvement of host defense mechanisms in the development of acute reflux esophagitis using lafutidine, a histamine H(2) receptor antagonist (H(2)RA) with proven gastric mucosal protective effects. Conclusion: The present results indicate that esophageal host-defense via capsaicin-sensitive afferent nerves may contribute to the therapeutic action of lafutidine. [1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H29N3O4S
Molecular Weight
431.55
Exact Mass
431.187
Elemental Analysis
C, 61.23; H, 6.77; N, 9.74; O, 14.83; S, 7.43
CAS #
118288-08-7
Related CAS #
(Z)-Lafutidine; 206449-93-6; Lafutidine-d10; 1795136-26-3; 118288-08-7; 169899-19-8
PubChem CID
5282136
Appearance
White to off-white solid powder
Density
1.3±0.1 g/cm3
Boiling Point
704.2±60.0 °C at 760 mmHg
Melting Point
99 °C
Flash Point
379.7±32.9 °C
Vapour Pressure
0.0±2.2 mmHg at 25°C
Index of Refraction
1.599
LogP
1.1
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
11
Heavy Atom Count
30
Complexity
569
Defined Atom Stereocenter Count
0
SMILES
S(C([H])([H])C(N([H])C([H])([H])/C(/[H])=C(/[H])\C([H])([H])OC1C([H])=C(C([H])=C([H])N=1)C([H])([H])N1C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H])=O)(C([H])([H])C1=C([H])C([H])=C([H])O1)=O
InChi Key
KMZQAVXSMUKBPD-DJWKRKHSSA-N
InChi Code
InChI=1S/C22H29N3O4S/c26-21(18-30(27)17-20-7-6-14-28-20)23-9-2-5-13-29-22-15-19(8-10-24-22)16-25-11-3-1-4-12-25/h2,5-8,10,14-15H,1,3-4,9,11-13,16-18H2,(H,23,26)/b5-2-
Chemical Name
2-(furan-2-ylmethylsulfinyl)-N-[(Z)-4-[4-(piperidin-1-ylmethyl)pyridin-2-yl]oxybut-2-enyl]acetamide
Synonyms
FRG-8813; Lafutidine; FRG8813; 118288-08-7; 206449-93-6; rac Lafutidine; FRG-8813; (Z)-Lafutidine; Lafutidine [INN]; Lafutidine [JAN]; FRG 8813; trade name: Protecadin; Stogar
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~86 mg/mL (~199.3 mM)
Water: <1 mg/mL
Ethanol: ~13 mg/mL (~30.1 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 3 mg/mL (6.95 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 3 mg/mL (6.95 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 3 mg/mL (6.95 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3172 mL 11.5861 mL 23.1723 mL
5 mM 0.4634 mL 2.3172 mL 4.6345 mL
10 mM 0.2317 mL 1.1586 mL 2.3172 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
The randomized controlled trial of the efficacy of goshajinkigan, mecobalamin and lafutidine in breast cancer patients with chemotherapy-induced peripheral neuropathy.
CTID: UMIN000010969
Phase: Phase III    Status: Complete: follow-up complete
Date: 2013-06-15
Clinical effect of lafutidine (Protecadin) on the mild case of Reflux Disease (health care economic comparison of which it contrasts Lansoprazole)
CTID: UMIN000006162
PhaseNot applicable    Status: Pending
Date: 2011-08-22
Comparison of potentiation of gastric mucus secretion between ranitidine and lafutidine-randamized cross-over trial
CTID: UMIN000005835
Phase:    Status: Complete: follow-up continuing
Date: 2011-08-01
The efficacy of lafutidine on heartburn in patients with mild gastroesophageal reflux disease (GERD)
CTID: UMIN000005943
Phase: Phase II    Status: Recruiting
Date: 2011-07-07
The efficacy of lafutidine in patients with chemotherapy-induced peripheral neuropathy treated with a taxane.
CTID: UMIN000005338
Phase: Phase II    Status: Complete: follow-up complete
Date: 2011-03-29
View More

Early effects of oral administrations of lafutidine with mint oil on intragastric pH
CTID: UMIN000001864
Phase:    Status: Complete: follow-up complete
Date: 2009-05-01


Early effects of oral administrations of lafutidine with mosapride on intragastric pH
CTID: UMIN000001311
Phase:    Status: Complete: follow-up complete
Date: 2008-08-15

Contact Us