Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
Purity: ≥98%
LDN193189 2HCl is the dihydrochloride salt of LDN193189, which is a highly potent and selective small molecule inhibitor of the BMP (bone morphogenetic protein ) signaling pathway. It inhibits the transcriptional activity of the BMP type I receptor kinases such as ALK2 (activin receptor-like kinase-2) and ALK3 with IC50 of 5 nM and 30 nM in C2C12 cells, respectively, it exhibits 200-fold selectivity for BMP versus TGF-β. LDN193189 has been showed to inhibit BMP induced phosphorylation of Smad signaling (Smad1/5/8) and non-Smad signaling including p38 and Akt in C2C12 cells. LDN-193189 inhibits activation of the BMP signaling effectors SMAD1, SMAD5 and SMAD8 in tissues expressing caALK2 induced by adenovirus specifying Cre (Ad.Cre).
Targets |
ACVR1 (IC50 = 5 nM); BMPR1A (IC50 = 30 nM); ALK2 (IC50 = 5 nM), ALK3 (IC50 = 30 nM)
|
||
---|---|---|---|
ln Vitro |
With IC50 values of 5 nM and 30 nM, respectively, LDN-193189 effectively suppresses the transcriptional activity of the BMP type I receptors ALK2 and ALK3[1]. With IC50 values of less than 500 nM, LDN-193189 exhibits negligible effects on activin and TGF-β type I receptors ALK4, ALK5, and ALK7[1]. ActRIIA is bound by LDN-193189 at a Kd value of 14 nM[2]. LDN-193189 (0.5 μM; 30 min) targeting the suppression of myogenic transcription factors and Smad2/3 signaling triggered by GDF8[2]. Effectively inhibiting GDF8-induced Smad3/4 reporter gene activity is LDN-193189 (0.05, 0.5, and 5 μM)[2]. GDF8-treated myoblasts see their myogenesis restored by LDN-193189 (0–5 μM)[2].
|
||
ln Vivo |
LDN-193189 (ip; 3 mg/kg; daily; 35 days) may have an impact on how breast cancer cells interact with their surroundings in the bone[3]. LDN-193189 (ip; 3 mg/kg; single) reduces functional impairment and ectopic ossification [1].
A selective inhibitor of BMP type I receptor kinases, LDN-193189 (ref. 6), inhibits activation of the BMP signaling effectors SMAD1, SMAD5 and SMAD8 in tissues expressing caALK2 induced by adenovirus specifying Cre (Ad.Cre). This treatment resulted in a reduction in ectopic ossification and functional impairment. In contrast to localized induction of caALK2 by Ad.Cre (which entails inflammation), global postnatal expression of caALK2 (induced without the use of Ad.Cre and thus without inflammation) does not lead to ectopic ossification. However, if in this context an inflammatory stimulus was provided with a control adenovirus, ectopic bone formation was induced. Like LDN-193189, corticosteroid inhibits ossification in Ad.Cre-injected mutant mice, suggesting caALK2 expression and an inflammatory milieu are both required for the development of ectopic ossification in this model. These results support the role of dysregulated ALK2 kinase activity in the pathogenesis of FOP and suggest that small molecule inhibition of BMP type I receptor activity may be useful in treating FOP and heterotopic ossification syndromes associated with excessive BMP signaling.[1] In the present study, researchers aimed at investigating the impact of the LDN-193189 compound, a potent inhibitor of the BMP type I receptor, on metastasis development in vivo. ZNF217-revLuc cells were injected into the left ventricle of nude mice (n = 16) while control mice (n = 13) were inoculated with control pcDNA6-revLuc cells. Mice from each group were treated or not with LDN-193189 for 35 days. We found that systemic LDN-193189 treatment of mice significantly enhanced metastasis development, by increasing both the number and the size of metastases. In pcDNA6-revLuc-injected mice, LDN-193189 also affected the kinetics of metastasis emergence. Altogether, these data suggest that in vivo, LDN-193189 might affect the interaction between breast cancer cells and the bone environment, favoring the emergence and development of multiple metastases. Hence, our report highlights the importance of the choice of drugs and therapeutic strategies used in the management of bone metastases.[3] |
||
Enzyme Assay |
Id1 and plasminogen activator inhibitor-1 promoter luciferase reporter assays[1]
We transiently transfected mouse PASMCs grown to 50% confluence in six-well plates with 0.3 μg Id1 promoter luciferase reporter construct (BRE-Luc30, kindly provided by P. ten Dijke) in combination with 0.6 μg of plasmid expressing constitutively active forms of BMP type I receptors (caALK2, caALK3 or caALK631, kindly provided by K. Miyazono), using Fugene6. To assess activin and TGF-β type I receptor function, we transiently transfected PASMCs with 0.3 μg PAI1 (plasminogen activator inhibitor-1) promoter luciferase reporter construct (CAGA-Luc32, provided by P. ten Dijke) in combination with 0.6 μg of plasmid expressing constitutively active forms of type I receptors (caALK4, caALK5 and caALK733,). For both reporter plasmids, we used 0.2 μg of pRL-TK Renilla luciferase to control for transfection efficiency. We incubated PASMCs with LDN-193189 (2 nM–32 μM) or vehicle starting 1 h after transfection. We harvested cell extracts and quantified relative promoter activity by the ratio of firefly to Renilla luciferase activity with the dual luciferase assay kit.
|
||
Cell Assay |
Immunoblot analysis of Smad1, Smad5 and Smad8 phosphorylation[1]
We mechanically homogenized cell extracts in SDS-lysis buffer (62.5 mM Tris-HCl (pH 6.8), 2% SDS, 10% glycerol, 50 mM dithiothreitol and 0.01% bromophenol blue), separated the proteins by SDS-PAGE, immunoblotted with polyclonal antibodies specific for phosphorylated Smad1, Smad5 and Smad8, phosphorylated Smad2 or rabbit monoclonal antibodies specific for Smad1 or Smad2 , and visualized the immunoreactive proteins with ECL Plus.[1]
|
||
Animal Protocol |
|
||
References |
|
||
Additional Infomation |
Fibrodysplasia ossificans progressiva (FOP) is a congenital disorder of progressive and widespread postnatal ossification of soft tissues and is without known effective treatments. Affected individuals harbor conserved mutations in the ACVR1 gene that are thought to cause constitutive activation of the bone morphogenetic protein (BMP) type I receptor, activin receptor-like kinase-2 (ALK2). Here we show that intramuscular expression in the mouse of an inducible transgene encoding constitutively active ALK2 (caALK2), resulting from a glutamine to aspartic acid change at amino acid position 207, leads to ectopic endochondral bone formation, joint fusion and functional impairment, thus phenocopying key aspects of human FOP. A selective inhibitor of BMP type I receptor kinases, LDN-193189 (ref. 6), inhibits activation of the BMP signaling effectors SMAD1, SMAD5 and SMAD8 in tissues expressing caALK2 induced by adenovirus specifying Cre (Ad.Cre). This treatment resulted in a reduction in ectopic ossification and functional impairment. In contrast to localized induction of caALK2 by Ad.Cre (which entails inflammation), global postnatal expression of caALK2 (induced without the use of Ad.Cre and thus without inflammation) does not lead to ectopic ossification. However, if in this context an inflammatory stimulus was provided with a control adenovirus, ectopic bone formation was induced. Like LDN-193189, corticosteroid inhibits ossification in Ad.Cre-injected mutant mice, suggesting caALK2 expression and an inflammatory milieu are both required for the development of ectopic ossification in this model. These results support the role of dysregulated ALK2 kinase activity in the pathogenesis of FOP and suggest that small molecule inhibition of BMP type I receptor activity may be useful in treating FOP and heterotopic ossification syndromes associated with excessive BMP signaling.[1]
GDF8, or myostatin, is a member of the TGF-β superfamily of secreted polypeptide growth factors. GDF8 is a potent negative regulator of myogenesis both in vivo and in vitro. We found that GDF8 signaling was inhibited by the small molecule ATP competitive inhibitors dorsomorphin and LDN-193189. These compounds were previously shown to be potent inhibitors of BMP signaling by binding to the BMP type I receptors ALK1/2/3/6. We present the crystal structure of the type II receptor ActRIIA with dorsomorphin and demonstrate that dorsomorphin or LDN-193189 target GDF8 induced Smad2/3 signaling and repression of myogenic transcription factors. As a result, both inhibitors rescued myogenesis in myoblasts treated with GDF8. As revealed by quantitative live cell microscopy, treatment with dorsomorphin or LDN-193189 promoted the contractile activity of myotubular networks in vitro. We therefore suggest these inhibitors as suitable tools to promote functional myogenesis.[2] Breast cancer with bone metastasis is essentially incurable with current anticancer therapies. The bone morphogenetic protein (BMP) pathway is an attractive therapeutic candidate, as it is involved in the bone turnover and in cancer cell formation and their colonization of distant organs such as the bone. We previously reported that in breast cancer cells, the ZNF217 oncogene drives BMP pathway activation, increases the metastatic growth rate in the bone, and accelerates the development of severe osteolytic lesions in mice. [3] |
Molecular Formula |
C25H24CL2N6
|
|
---|---|---|
Molecular Weight |
479.4
|
|
Exact Mass |
478.143
|
|
Elemental Analysis |
C, 62.63; H, 5.05; Cl, 14.79; N, 17.53
|
|
CAS # |
1435934-00-1
|
|
Related CAS # |
LDN193189;1062368-24-4;LDN193189 Tetrahydrochloride;2310134-98-4
|
|
PubChem CID |
91900717
|
|
Appearance |
Typically exists as orange to red solids at room temperature
|
|
Hydrogen Bond Donor Count |
3
|
|
Hydrogen Bond Acceptor Count |
5
|
|
Rotatable Bond Count |
3
|
|
Heavy Atom Count |
33
|
|
Complexity |
587
|
|
Defined Atom Stereocenter Count |
0
|
|
SMILES |
N1=C2C(C=CC=C2)=C(C2=C3N(N=C2)C=C(C2=CC=C(N4CCNCC4)C=C2)C=N3)C=C1.[H]Cl.[H]Cl
|
|
InChi Key |
CMQXLLAILGGLRV-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C25H22N6.2ClH/c1-2-4-24-22(3-1)21(9-10-27-24)23-16-29-31-17-19(15-28-25(23)31)18-5-7-20(8-6-18)30-13-11-26-12-14-30;;/h1-10,15-17,26H,11-14H2;2*1H
|
|
Chemical Name |
4-[6-(4-piperazin-1-ylphenyl)pyrazolo[1,5-a]pyrimidin-3-yl]quinoline;dihydrochloride
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0859 mL | 10.4297 mL | 20.8594 mL | |
5 mM | 0.4172 mL | 2.0859 mL | 4.1719 mL | |
10 mM | 0.2086 mL | 1.0430 mL | 2.0859 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
Inhibitor binding to ActRII.J Biol Chem.2015 Feb 6;290(6):3390-404. Dorsomorphin and LDN-193189 inhibit GDF8-induced signaling pathways in undifferentiated and in differentiated primary human myoblasts and in C2C12 premyoblasts.J Biol Chem.2015 Feb 6;290(6):3390-404. th> |
---|
Ligand-specific effects of kinase inhibitors on Smad2/3 and Smad1/5 phosphorylation. Dorsomorphin treatment facilitates myotube formation.J Biol Chem.2015 Feb 6;290(6):3390-404. td> |
Dorsomorphin and LDN-193189 efficiently inhibit GDF8 induced Smad3/4 reporter gene activity.J Biol Chem.2015 Feb 6;290(6):3390-404. td> |
Dorsomorphin and LDN-193189 counteract GDF8-induced repression of myogenic differentiation.J Biol Chem.2015 Feb 6;290(6):3390-404. th> |
---|
Dorsomorphin and LDN-193189 promote the formation of a contractile myotube network.J Biol Chem.2015 Feb 6;290(6):3390-404. td> |