yingweiwo

Levodopa (L-DOPA)

Alias:
Cat No.:V1252 Purity: ≥98%
Levodopa(L-DOPA, Dopar, Sinemet, Pharmacopa, Atamet, Stalevo, Madopar, Prolopa) is the L-isomer of DOPA and the precursor to the neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline) with anti-Parkinsons disease activity.
Levodopa (L-DOPA)
Levodopa (L-DOPA) Chemical Structure CAS No.: 59-92-7
Product category: Dopamine Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
250mg
500mg
1g
2g
5g
Other Sizes

Other Forms of Levodopa (L-DOPA):

  • L-DOPA-2,5,6-d3 (levodopa-d3)
  • L-DOPA-d6 (Levodopa-d6; 3,4-Dihydroxyphenylalanine-d6)
  • Levodopa sodium
  • L-DOPA-13C6 (levodopa-13C6; Levodopa-13C6; 3,4-Dihydroxyphenylalanine-13C6)
  • L-DOPA-13C (levodopa-13C)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Levodopa (L-DOPA, Dopar, Sinemet, Pharmacopa, Atamet, Stalevo, Madopar, Prolopa) is the L-isomer of DOPA and the precursor to the neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline) with anti-Parkinson's disease activity. It has been applied to alleviate Parkinson's disease symptoms. Levodopa is a chemical that is produced and utilized by humans, certain animals, and plants as part of their regular biology. L-tyrosine, an amino acid, is biosynthesised by certain humans and animals. Moreover, L-DOPA itself mediates the brain and central nervous system's release of neurotrophic factors.

Biological Activity I Assay Protocols (From Reference)
Targets
Dopamine receptor
ln Vitro

In vitro activity: Levodopa reduces 3H-DA uptake in fetal rat midbrain cultures in a dose-dependent manner at concentrations between 25 and 200 μM. Levodopa causes disruption to the entire neuritic network as well as a reduction in the number of viable cells and TH-positive neurones.[1] By excessively inhibiting the neurons of the putamen-globus pallidus (GPe) projection and then disinhibiting the globus pallidus (GPe), levodopa causes dyskinesia in the absence of dopamine. In the globus pallidus (GPi), levodopa causes a decrease in the expression of cytochrome oxidase messenger RNA.[2]


ln Vivo
Levodopa causes a range of atypical movements in monkeys suffering from parkinsonism brought on by the neurotoxin MPTP. In 6-OHDA-lesioned rats, levodopa administrations cause an ectopic induction of dopamine D3receptor expression in the CdPu.[3] In intact rats, levodopa (50 mg/kg) activates dopamine D1/D2 receptors, raising anandamide concentrations throughout the basal ganglia. In lesioned rats, levodopa causes progressively more severe oro-lingual involuntary movements that are lessened by the cannabinoid agonist R(+)-WIN55,212-2 (1 mg/kg). The up-regulation of D2 dopamine receptors observed in rats with severe lesioning is reversed upon levodopa administration [4], indicating that levodopa reaches a biologically active concentration at the basal ganglia.[5]
Cell Assay
Levodopa, a dopamine (DA) precursor administered to patients with Parkinson's disease (PD), produces at 25-200 x 10(-6) M concentrations a dose-dependent reduction of 3H-DA uptake in foetal rat midbrain cultures. Also, a decrease in the number of viable cells and tyrosine hydroxylase (TH) positive neurones, plus disruption of the overall neuritic network are observed concurrently with an elevation of quinone levels in the culture medium. Ascorbic acid (AA), which abolished the quinone overproduction, partially prevented these effects. Though levodopa neurotoxicity in vivo is as yet unproven, AA may reduce vulnerability of endogenous or grafted DA neurones in patients with PD[1].
Animal Protocol
7-week-old C57BL/6J mice
20 mg/kg
Orally
Animal Surgery and Treatments. Wistar male rats (180–200 g, Iffa Credo) were anesthetized with pentobarbital (50 mg/kg, i.p.) and infused over 8 min with 6-OHDA (8 μg in 4 μl of 0.05% ascorbic acid in saline) at coordinates A = −3.8 mm, L = 1.5 mm, H = −8.5 mm. Three weeks later, they received twice a day, and for various periods of time, i.p. injections of vehicle, levodopa (in all experiments as l-DOPA methyl ester, 50 mg/kg, in combination with benserazide, a peripheral dopa decarboxylase inhibitor, 12.5 mg/kg) or levodopa plus SCH 23390 (0.5 mg/kg) or plus SKF 38393 (10 mg/kg), bromocriptine (10 mg/kg), quinpirole (0.1 mg/kg).[3]
The majority of Parkinson's disease patients undergoing levodopa therapy develop disabling motor complications (dyskinesias) within 10 years of treatment. Stimulation of cannabinoid receptors, the pharmacological target of Delta 9-tetrahydrocannabinol, is emerging as a promising therapy to alleviate levodopa-associated dyskinesias. However, the mechanisms underlying this beneficial action remain elusive, as do the effects exerted by levodopa therapy on the endocannabinoid system. Although levodopa is known to cause changes in CB1 receptor expression in animal models of Parkinson's disease, we have no information on whether this drug alters the brain concentrations of the endocannabinoids anandamide and 2-arachidonylglycerol. To address this question, we used an isotope dilution assay to measure endocannabinoid levels in the caudate-putamen, globus pallidus and substantia nigra of intact and unilaterally 6-OHDA-lesioned rats undergoing acute or chronic treatment with levodopa (50 mg/kg). In intact animals, systemic administration of levodopa increased anandamide concentrations throughout the basal ganglia via activation of dopamine D1/D2 receptors. In 6-OHDA-lesioned rats, anandamide levels were significantly reduced in the caudate-putamen ipsilateral to the lesion; however, neither acute nor chronic levodopa treatment affected endocannabinoid levels in these animals. In lesioned rats, chronic levodopa produced increasingly severe oro-lingual involuntary movements which were attenuated by the cannabinoid agonist R(+)-WIN55,212-2 (1 mg/kg). This effect was reversed by the CB1 receptor antagonist rimonabant (SR141716A). These results indicate that a deficiency in endocannabinoid transmission may contribute to levodopa-induced dyskinesias and that these complications may be alleviated by activation of CB1 receptors.[4]
Orally administered levodopa remains the most effective symptomatic treatment for Parkinson's disease (PD). The introduction of levodopa therapy is often delayed, however, because of the fear that it might be toxic for the remaining dopaminergic neurons and, thus, accelerate the deterioration of patients. However, in vivo evidence of levodopa toxicity is scarce. We have evaluated the effects of a 6-month oral levodopa treatment on several dopaminergic markers, in rats with moderate or severe 6-hydroxydopamine-induced lesions of mesencephalic dopamine neurons and sham-lesioned animals. Counts of tyrosine hydroxylase (TH)-immunoreactive neurons in the substantia nigra and ventral tegmental area showed no significant difference between levodopa-treated and vehicle-treated rats. In addition, for rats of the sham-lesioned and severely lesioned groups, immunoradiolabeling for TH, the dopamine transporter (DAT), and the vesicular monoamine transporter (VMAT2) at the striatal level was not significantly different between rats treated with levodopa or vehicle. It was unexpected that quantification of immunoautoradiograms showed a partial recovery of all three dopaminergic markers (TH, DAT, and VMAT2) in the denervated territories of the striatum of moderately lesioned rats receiving levodopa. Furthermore, the density of TH-positive fibers observed in moderately lesioned rats was higher in those treated chronically with levodopa than in those receiving vehicle. Last, that chronic levodopa administration reversed the up-regulation of D2 dopamine receptors seen in severely lesioned rats provided evidence that levodopa reached a biologically active concentration at the basal ganglia. Our results demonstrate that a pharmacologically effective 6-month oral levodopa treatment is not toxic for remaining dopamine neurons in a rat model of PD but instead promotes the recovery of striatal innervation in rats with partial lesions.[5]
References

[1]. Neuroreport . 1993 Apr;4(4):438-40.

[2]. J Antimicrob Chemother . 2004 Jun;53(6):1086-9.

[3]. Proc Natl Acad Sci U S A, 1997, 94(7), 3363-3367.

[4]. Eur J Neurosci . 2003 Sep;18(6):1607-14.

[5]. Ann Neurol . 1998 May;43(5):561-75.

Additional Infomation
L-dopa is an optically active form of dopa having L-configuration. Used to treat the stiffness, tremors, spasms, and poor muscle control of Parkinson's disease It has a role as a prodrug, a hapten, a neurotoxin, an antiparkinson drug, a dopaminergic agent, an antidyskinesia agent, an allelochemical, a plant growth retardant, a human metabolite, a mouse metabolite and a plant metabolite. It is a dopa, a L-tyrosine derivative and a non-proteinogenic L-alpha-amino acid. It is a conjugate acid of a L-dopa(1-). It is an enantiomer of a D-dopa. It is a tautomer of a L-dopa zwitterion.
Levodopa is a prodrug of dopamine that is administered to patients with Parkinson's due to its ability to cross the blood-brain barrier. Levodopa can be metabolised to dopamine on either side of the blood-brain barrier and so it is generally administered with a dopa decarboxylase inhibitor like carbidopa to prevent metabolism until after it has crossed the blood-brain barrier. Once past the blood-brain barrier, levodopa is metabolized to dopamine and supplements the low endogenous levels of dopamine to treat symptoms of Parkinson's. The first developed drug product that was approved by the FDA was a levodopa and carbidopa combined product called Sinemet that was approved on May 2, 1975.
3,4-Dihydroxy-L-phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Levodopa is an Aromatic Amino Acid.
View More

Levodopa is a natural product found in Mucuna macrocarpa, Amanita muscaria, and other organisms with data available.


Levodopa is an amino acid precursor of dopamine with antiparkinsonian properties. Levodopa is a prodrug that is converted to dopamine by DOPA decarboxylase and can cross the blood-brain barrier. When in the brain, levodopa is decarboxylated to dopamine and stimulates the dopaminergic receptors, thereby compensating for the depleted supply of endogenous dopamine seen in Parkinson's disease. To assure that adequate concentrations of levodopa reach the central nervous system, it is administered with carbidopa, a decarboxylase inhibitor that does not cross the blood-brain barrier, thereby diminishing the decarboxylation and inactivation of levodopa in peripheral tissues and increasing the delivery of dopamine to the CNS.
Levodopa can cause developmental toxicity according to state or federal government labeling requirements.
L-Dopa is used for the treatment of Parkinsonian disorders and Dopa-Responsive Dystonia and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. Peripheral tissue conversion may be the mechanism of the adverse effects of levodopa. It is standard clinical practice to co-administer a peripheral DOPA decarboxylase inhibitor - carbidopa or benserazide - and often a catechol-O-methyl transferase (COMT) inhibitor, to prevent synthesis of dopamine in peripheral tissue. The naturally occurring form of dihydroxyphenylalanine and the immediate precursor of dopamine. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. It is used for the treatment of parkinsonian disorders and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. [PubChem] L-Dopa is the naturally occurring form of dihydroxyphenylalanine and the immediate precursor of dopamine. Unlike dopamine itself, L-Dopa can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. In particular, it is metabolized to dopamine by aromatic L-amino acid decarboxylase. Pyridoxal phosphate (vitamin B6) is a required cofactor for this decarboxylation, and may be administered along with levodopa, usually as pyridoxine.
The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system.

Drug Tolerance: Levodopa therapy can have a dramatic effect on all the signs & symptoms of /Parkinson's Disease/. Early in the course of the disease, the degree of improvement in tremor, rigidity, & bradykinesia may be nearly complete. In early PD, the duration of the beneficial effects of levodopa may exceed the plasma lifetime of the drug, suggesting that the nigrostriatal dopamine system retains some capacity to store & release dopamine. A principal limitation of the long-term use of levodopa therapy is that, with time, this apparent "buffering" capacity is lost, & the patient's motor state may fluctuate dramatically with each dose of levodopa. A common problem is the development of the "wearing off" phenomenon; each dose of levodopa effectively improves mobility for a period of time, perhaps 1-2 hr, but rigidity & akinesia rapidly return at the end of the dosing interval. Increasing the dose & frequency of admin can improve this situation, but this often is limited by development of dyskinesias, excessive & abnormal involuntary movements. Dyskinesias are observed most often when the plasma levodopa concn is high, although, in some individuals, dyskinesias or dystonia may be triggered when the level is rising or falling. These movements can be as uncomfortable & disabling as the rigidity & akinesia of PD. In the later stages of PD, patients may fluctuate rapidly between being "off," having no beneficial effects from their medications, & being "on" but with disabling dyskinesias, a situation called to "on/off phenomenon."
Pharmacodynamics: Levodopa is able to cross the blood-brain barrier while dopamine is not. The addition of a peripheral dopa decarboxylase inhibitor prevents the conversion of levodopa to dopamine in the periphery so that more levodopa can reach the blood-brain barrier. Once past the blood-brain barrier, levodopa is converted to dopamine by aromatic-L-amino-acid decarboxylase.
Absorption: Orally inhaled levodopa reaches a peak concentration in 0.5 hours with a bioavailability than is 70% that of the immediate release levodopa tablets with a peripheral dopa decarboxylase inhibitor like carbidopa or benserazide.
Route of Elimination: After 48 hours, 0.17% of an orally administered dose is recovered in stool, 0.28% is exhaled, and 78.4% is recovered in urine
Volume of Distribution: 168L for orally inhaled levodopa.
Clearance: Intravenously administered levodopa is cleared at a rate of 14.2mL/min/kg in elderly patients and 23.4mL/min/kg in younger patients. When given carbidopa, the clearance of levodopa was 5.8mL/min/kg in elderyly patients and 9.3mL/min/kg in younger patients.
Metabolism / Metabolites: Levodopa is either converted to dopamine by aromatic-L-amino-acid decarboxylase or O-methylated to 3-O-methyldopa by catechol-O-methyltransferase. 3-O-methyldopa cannot be metabolized to dopamine. Once levodopa is converted to dopamine, it is converted to sulfated or glucuronidated metabolites, epinephrine E, or homovanillic acid through various metabolic processes. The primary metabolites are 3,4-dihydroxyphenylacetic acid (13-47%) and homovanillic acid (23-39%).
Biological Half-Life: 2.3 hours for orally inhaled levodopa. Oral levodopa has a half life of 50 minutes but when combined with a peripheral dopa decarboxylase inhibitor, the half life is increased to 1.5 hours.
Mechanism of Action: Levodopa by various routes crosses the blood brain barrier, is decarboxylated to form dopamine. This supplemental dopamine performs the role that endogenous dopamine cannot due to a decrease of natural concentrations and stimulates dopaminergic receptors.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C9H11NO4
Molecular Weight
197.19
Exact Mass
197.07
Elemental Analysis
C, 54.82; H, 5.62; N, 7.10; O, 32.46
CAS #
59-92-7
Related CAS #
L-DOPA-2,5,6-d3; 53587-29-4; L-DOPA-d6; 713140-75-1; L-DOPA sodium; 63302-01-2; L-DOPA-13C6; 201417-12-1; L-DOPA-13C; 586971-29-1
PubChem CID
6047
Appearance
White to off-white solid powder
Density
1.5±0.1 g/cm3
Boiling Point
448.4±45.0 °C at 760 mmHg
Melting Point
276-278 °C
Flash Point
225.0±28.7 °C
Vapour Pressure
0.0±1.1 mmHg at 25°C
Index of Refraction
1.655
LogP
-0.22
tPSA
103.78
SMILES
C1=CC(=C(C=C1C[C@@H](C(=O)O)N)O)O
InChi Key
WTDRDQBEARUVNC-LURJTMIESA-N
InChi Code
InChI=1S/C9H11NO4/c10-6(9(13)14)3-5-1-2-7(11)8(12)4-5/h1-2,4,6,11-12H,3,10H2,(H,13,14)/t6-/m0/s1
Chemical Name
(2S)-2-amino-3-(3,4-dihydroxyphenyl)propanoic acid
Synonyms

Levodopa, 3,4-Dihydroxyphenylalanin; L-DOPA; Dopar; Sinemet; Pharmacopa; Atamet; Stalevo; Madopar; 3,4-dihydroxy-L-phenylalanine; Dopar; 3-Hydroxy-L-tyrosine; Bendopa; Larodopa; Prolopa

HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: (1). Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture.  (2). This product is not stable in solution, please use freshly prepared working solution for optimal results.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: <1 mg/mL
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: 3.33 mg/mL (16.89 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication (<60°C).

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.0713 mL 25.3563 mL 50.7125 mL
5 mM 1.0143 mL 5.0713 mL 10.1425 mL
10 mM 0.5071 mL 2.5356 mL 5.0713 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT04990284 Active
Recruiting
Drug: Opicapone
Drug: L-DOPA/DDCI
Parkinson Disease Bial - Portela C S.A. November 29, 2021 Phase 4
NCT02480803 Active
Recruiting
Device: deep brain stimulation
Drug: Continuous intrajejunal
infusion of levodopa-carbidopa
Parkinson's Disease Academisch Medisch Centrum -
Universiteit van Amsterdam
(AMC-UvA)
December 19, 2014 Phase 4
NCT03243552 Active
Recruiting
Drug: L-DOPA versus Placebo
Behavioral: Social Skills Training
ASD University of California, Los
Angeles
June 1, 2017 Phase 2
NCT04469959 Recruiting Drug: L-Dopa
Drug: Placebo
Levodopa
Gait Impairment
Vanderbilt University Medical
Center
February 15, 2021 Phase 2
NCT06075771 Recruiting Drug: Carbidopa Levodopa
Drug: Placebo
Anhedonia
Depression
Emory University November 21, 2023 Phase 4
Biological Data
  • Changes in D3 receptor binding elicited by repeated levodopa treatments of 6-OHDA-lesioned rats. Proc Natl Acad Sci U S A . 1997 Apr 1;94(7):3363-7.
  • Progressive changes in D3-receptor binding and levodopa-induced rotations and neuropeptide mRNAs in CdPu of unilaterally 6-OHDA-lesioned rats following repeated treatment with levodopa and withdrawal. Proc Natl Acad Sci U S A . 1997 Apr 1;94(7):3363-7.
  • Effects of nafadotride, a preferential D3-receptor antagonist on levodopa-induced rotations. Proc Natl Acad Sci U S A . 1997 Apr 1;94(7):3363-7.
Contact Us