yingweiwo

Levothyroxine Sodium

Alias: Levothyroxine sodium; L-Thyroxine sodium; 55-03-8; Euthyrox; Unithroid; levothroid; Levoxyl; Novothyrox;
Cat No.:V22762 Purity: ≥98%
Levothyroxine Sodium (L-T4 sodium,LT4 sodium,LT4 sodium,L-Thyroxine sodium), a major thyroid hormones involved in the maintenance of metabolic homeostasis, is an endogenous agonist of Thyroid hormone receptor alpha and beta.
Levothyroxine Sodium
Levothyroxine Sodium Chemical Structure CAS No.: 55-03-8
Product category: THR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1g
2g
5g
10g
25g
Other Sizes

Other Forms of Levothyroxine Sodium:

  • Levothyroxine (L-Thyroxine; T4)
  • L-Thyroxine sodium salt pentahydrate
  • Thyroxine sulfate
  • L-Thyroxine-13C6-1 (L-Thyroxine-13C6; Levothyroxine-13C6-1; T4-13C6-1)
  • Biotin-(L-Thyroxine)
  • Biotin-hexanamide-(L-Thyroxine)
  • Thyroxine hydrochloride-13C6 (L-Thyroxine-13C6; Levothyroxine-13C6; T4-13C6)
  • L-Thyroxine-13C6 (L-Thyroxine-13C6)
  • L-Thyroxine-13C6,15N (L-Thyroxine-13C6)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Levothyroxine Sodium (L-T4 sodium, LT4 sodium, LT4 sodium, L-Thyroxine sodium), a major thyroid hormones involved in the maintenance of metabolic homeostasis, is an endogenous agonist of Thyroid hormone receptor alpha and beta.

Biological Activity I Assay Protocols (From Reference)
Targets
Endogenous Metabolite; synthetic form of the thyroid hormone thyroxine (T4)
ln Vitro
Levothyroxine treatment generates an abnormal uterine contractility patterns in an in vitro animal model[2] Screening of thyroid function confirmed a hypothyroid state for all rats under iodine-free diet to which T4 was subsequently administered to counterbalance hypothyroidism. Results demonstrate that hypothyroidism significantly decreased contractile duration (-17%) and increased contractile frequency (+26%), while high doses of T4 increased duration (+200%) and decreased frequency (-51%). These results thus mimic the pattern of abnormal contractions previously observed in uterine tissue from T4-treated hypothyroid pregnant women. Conclusion: Our data suggest that changes in myometrial reactivity are induced by T4 treatment. Thus, in conjunction with our previous observations on human myometrial strips, management of hypothyroidism should be improved to reduce the rate of C-sections in this group of patients[2].
ln Vivo
Deiodinase (DIO), which catalyzes the conversion of adrenaline (cortogen) into active adrenal cortex, corresponds with catalytic adrenaline (TSH) levels. DIO1 and DIO2 accelerate the activation of the adrenal cortex, while DIO3 is reduced to inactivity. The actions of DIO1 and DIO2 play a critical role in the negative feedback control of pituitary TSH [1]. L-Thyroxine sodium (T4) and triprostaglandin (T3) fisheries are known to affect ion channels, pumps and modulatory characteristics. Additionally, pancreatic islet hormones have been demonstrated to impact the expression of arcticin and proteins involved for excitability and contractility, L- Insulin and triiodothyronine govern its pharmacological regulation and. In the 12-week cohort, significantly lower levels of triiodothyronine and L-thyroxine were reported compared with controls fed a conventional diet. In the group treated with low-dose L-thyroxine, an increase in L-thyroxine levels was seen, although triiodothyronine levels remained practically similar to those in the thyroid gland. Circulating concentrations of triiodothyronine and L-pakatin were significantly raised in individuals treated with high-dose L-thyroxine compared with the untreated hypothyroid group, and L-pakatin levels were significantly elevated compared with control values [2 ].
Cell Assay
Biochemical techniques[2] ELISA assays were performed using a standard rat Thyroxine (T4) and T3 ELISA kit according to the manufacturer's protocol. Western blot analysis was performed exactly as previously described.
Animal Protocol
Sprague–Dawley female rats (N = 22) were used. Non-pregnant rats were divided into four groups: 1) control, 2) hypothyroidism, 3) hypothyroidism treated with low doses of Levothyroxine (T4) (20 μg/kg/day) and 4) with high doses of T4 (100 μg/kg/day). Control rats (group 1) were fed with standard diet (TD.120461, Harlan laboratories, Madison, WI) while the intervention rats were fed with iodine-free diet for 12 weeks to induce hypothyroidism (groups 2–4) which was continued for four more weeks to allow screening of hypothyroid status and T4-treatment. Food and water (iodine-free diet) were available ad libitum. The hypothyroid group treated with low (group 3) or high doses of T4 (group 4) were injected intraperitoneally every 24 h with respectively 20 μg/kg/day and 100 μg/kg/day as previously described by Medeiros. Blood samples were collected for thyroid function screening at week 12 and 16 following the initiation of either the control or iodine-free diet. Hysterectomy was performed under general anesthesia (isoflurane 2%) at the end of the treatment and the two uterine horns were placed in physiological Krebs' solution until isometric tension measurements within no more than 1 h.[2]
ADME/Pharmacokinetics
Absorption
Absorption of orally administered T4 from the gastrointestinal tract ranges from 40% to 80% with the majority of the levothyroxine dose absorbed from the jejunum and upper ileum. T4 absorption is increased by fasting, and decreased in malabsorption syndromes and by certain foods such as soybeans, milk, and dietary fiber. Absorption may also decrease with age. In addition, many drugs affect T4 absorption including bile acide sequestrants, sucralfate, proton pump inhibitors, and minerals such as calcium (including in yogurt and milk products), magnesium, iron, and aluminum supplements. To prevent the formation of insoluble chelates, levothyroxine should generally be taken on an empty stomach at least 2 hours before a meal and separated by at least 4 hours from any interacting agents.
Route of Elimination
Thyroid hormones are primarily eliminated by the kidneys. A portion of the conjugated hormone reaches the colon unchanged and is eliminated in the feces. Approximately 20% of T4 is eliminated in the stool. Urinary excretion of T4 decreases with age.

Circulating thyroid hormones are greater than 99% bound to plasma proteins, including thyroxine-binding globulin (TBG), thyroxine-binding prealbumin (TBPA), and albumin (TBA), whose capacities and affinities vary for each hormone. The higher affinity of both TBG and TBPA for T4 partially explains the higher serum levels, slower metabolic clearance, and longer half-life of T4 compared to T3. Protein-bound thyroid hormones exist in reverse equilibrium with small amounts of free hormone. Only unbound hormone is metabolically active. Many drugs and physiologic conditions affect the binding of thyroid hormones to serum proteins. Thyroid hormones do not readily cross the placental barrier. NIH; DailyMed. Current Medication Information for Synthroid (Levothyroxine Sodium) Tablet (Updated: December 2015). Available from, as of April 4, 2016: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=665c1eab-2649-498b-8da8-b15b3b743a21

Levothyroxine Sodium for Injection is administered via the intravenous route. Following administration, the synthetic levothyroxine cannot be distinguished from the natural hormone that is secreted endogenously. NIH; DailyMed. Current Medication Information for Levothyroxine Sodium (Levothyroxine Sodium) Anhydrous Injection, Powder, Lyophilized, For Solution (Updated: March 2015). Available from, as of April 4, 2016: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=f88f44d8-2f18-4155-9d78-6323d19fbafe

Absorption of orally administered T4 from the gastrointestinal (GI) tract ranges from 40% to 80%. The majority of the levothyroxine dose is absorbed from the jejunum and upper ileum. The relative bioavailability of Synthroid tablets, compared to an equal nominal dose of oral levothyroxine sodium solution, is approximately 93%. T4 absorption is increased by fasting, and decreased in malabsorption syndromes and by certain foods such as soybean infant formula. Dietary fiber decreases bioavailability of T4. Absorption may also decrease with age. In addition, many drugs and foods affect T4 absorption. NIH; DailyMed. Current Medication Information for Synthroid (Levothyroxine Sodium) Tablet (Updated: December 2015). Available from, as of April 4, 2016: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=665c1eab-2649-498b-8da8-b15b3b743a21

Levothyroxine is variably absorbed from the GI tract (range: 40-80%). In animals, levothyroxine is absorbed in the proximal and middle jejunum; the drug is not absorbed from the stomach or distal colon and little, if any, absorption occurs in the duodenum. Studies in humans indicate that levothyroxine is absorbed from the jejunum and ileum and some absorption also occurs in the duodenum. The degree of absorption of levothyroxine from the GI tract depends on the product formulation and type of intestinal contents, including plasma protein and soluble dietary factors that may bind thyroid hormone and make it unavailable for diffusion. In addition, concurrent oral administration of infant soybean formula, soybean flour, cotton seed meal, walnuts, foods containing large amounts of fiber, ferrous sulfate, antacids, sucralfate, calcium carbonate, cation-exchange resins (e.g., sodium polystyrene sulfonate), simethicone, or bile acid sequestrants may decrease absorption of levothyroxine. The extent of levothyroxine absorption is increased in the fasting state and decreased in malabsorption states (e.g., sprue); absorption also may decrease with age. American Society of Health-System Pharmacists 2015; Drug Information 2015. Bethesda, MD. 2015, p. 3230

For more Absorption, Distribution and Excretion (Complete) data for LEVOTHYROXINE (7 total), please visit the HSDB record page.
Metabolism / Metabolites
Approximately 70% of secreted T4 is deiodinated to equal amounts of T3 and reverse triiodothyronine (rT3), which is calorigenically inactive. T4 is slowly eliminated through its major metabolic pathway to T3 via sequential deiodination, where approximately 80% of circulating T3 is derived from peripheral T4. The liver is the major site of degradation for both T4 and T3, with T4 deiodination also occurring at a number of additional sites, including the kidney and other tissues. Elimination of T4 and T3 involves hepatic conjugation to glucuronic and sulfuric acids. The hormones undergo enterohepatic circulation as conjugates are hydrolyzed in the intestine and reabsorbed. Conjugated compounds that reach the colon are hydrolyzed and eliminated as free compounds in the feces. Other minor T4 metabolites have been identified.

Yields l-tyrosine in rabbit, in rat /From table/ Goodwin, B.L. Handbook of Intermediary Metabolism of Aromatic Compounds. New York: Wiley, 1976., p. T-14

Yields 3,3',5-triiodo-L-thyronine in man, rat, dog, rabbit. /From table/ Goodwin, B.L. Handbook of Intermediary Metabolism of Aromatic Compounds. New York: Wiley, 1976., p. T-14

Yields l-thyroxine-4'-beta-d-glucuronide in dog, in man, in rat. Yields l-thyroxine-4'-sulfate in dog. /From table/ Goodwin, B.L. Handbook of Intermediary Metabolism of Aromatic Compounds. New York: Wiley, 1976., p. T-14

Yields 3,3',5,5'-tetraiodothyropyruvic acid in rat. Yields l-thyronine in rat. /From table/ Goodwin, B.L. Handbook of Intermediary Metabolism of Aromatic Compounds. New York: Wiley, 1976., p. T-14

Yields 3,3'-diiodo-l-thyronine in dog. Yields 3,3',5,5'-tetraiodothyroacetic acid in man, in rat. /From table/ Goodwin, B.L. Handbook of Intermediary Metabolism of Aromatic Compounds. New York: Wiley, 1976., p. T-14
Biological Half-Life
T4 half-life is 6 to 7 days. T3 half-life is 1 to 2 days.

In dogs orally administered levothyroxine has relatively ... short elimination half life when compared to humans. ... The serum half life is approximately 12-16 hours. Plumb D.C. Veterinary Drug Handbook. 8th ed. (pocket). Ames, IA: Wiley-Blackwell, 2015., p. 842

The usual plasma half-lives of thyroxine and triiodothyronine are 6-7 days and approximately 1-2 days, respectively. The plasma half-lives of thyroxine and triiodothyronine are decreased in patients with hyperthyroidism and increased in those with hypothyroidism.
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Levothyroxine (T4) is a normal component of human milk. Limited data on exogenous replacement doses of levothyroxine during breastfeeding indicate no adverse effects in infants. The American Thyroid Association recommends that subclinical and overt hypothyroidism should be treated with levothyroxine in lactating women seeking to breastfeed. Adequate levothyroxine treatment during lactation may normalize milk production in hypothyroid lactating mothers with low milk supply. Levothyroxine dosage requirement may be increased in the postpartum period compared to prepregnancy requirements in patients with Hashimoto's thyroiditis.
◉ Effects in Breastfed Infants
Effects of exogenous thyroid hormone administration to mothers on their infant have not been reported. One case of apparent mitigation of cretinism in hypothyroid infants by breastfeeding has been reported, but the amounts of thyroid hormones in milk are not optimal, and this result has been disputed. The thyroid hormone content of human milk from the mothers of very preterm infants appears not to be sufficient to affect the infants' thyroid status. The amounts of thyroid hormones in milk are apparently not sufficient to interfere with diagnosis of hypothyroidism.
In a telephone follow-up study, 5 nursing mothers reported taking levothyroxine (dosage unspecified). The mothers reported no adverse reactions in their infants.
One mother who had undergone a thyroidectomy was taking levothyroxine 100 mcg daily as well as calcium carbonate and calcitriol. Her breastfed infant was reportedly "thriving" at 3 months of age.
A woman with propionic acidemia took levothyroxine 50 mcg daily as well as biotin, carnitine, and various amino acids while exclusively breastfeeding her infant for 2 months and nonexclusively for 10 months. At that time, the infant had normal growth and development.
◉ Effects on Lactation and Breastmilk
Adequate thyroid hormone serum levels are required for normal lactation. Replacing deficient thyroid levels should improve milk production caused by hypothyroidism. Supraphysiologic doses would not be expected to further improve lactation.
References

[1]. Association between genetic polymorphism and levothyroxine bioavailability in hypothyroid patients. Endocr J. 2018 Mar 28;65(3):317-323.

[2]. Levothyroxine treatment generates an abnormal uterine contractility patterns in an in vitro animalmodel. J Clin Transl Endocrinol. 2015 Sep 9;2(4):144-149.

Additional Infomation
Levothyroxine Sodium is the sodium salt of levothyroxine, a synthetic levoisomer of thyroxine (T4) that is similar to the endogenous hormone produced by the thyroid gland. In peripheral tissues, levothyroxine is deiodinated by 5'-deiodinase to form triiodothyronine (T3). T3 enters the cell and binds to nuclear thyroid hormone receptors; the activated hormone-receptor complex in turn triggers gene expression and produces proteins required in the regulation of cellular respiration; thermogenesis; cellular growth and differentiation; and the metabolism of proteins, carbohydrates and lipids. T3 also exhibits cardiostimulatory effects.
The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H10I4NNAO4
Molecular Weight
798.85
Exact Mass
798.668
Elemental Analysis
C, 22.55; H, 1.26; I, 63.54; N, 1.75; Na, 2.88; O, 8.01
CAS #
55-03-8
Related CAS #
L-Thyroxine;51-48-9;L-Thyroxine sodium salt pentahydrate;6106-07-6; Thyroxine sulfate;77074-49-8;L-Thyroxine sodium salt pentahydrate;6106-07-6;L-Thyroxine sodium;55-03-8;L-Thyroxine-13C6-1;1217780-14-7;Biotin-(L-Thyroxine);149734-00-9;Biotin-hexanamide-(L-Thyroxine);2278192-78-0;Thyroxine hydrochloride-13C6;1421769-38-1;L-Thyroxine-13C6;720710-30-5;L-Thyroxine-13C6,15N;1431868-11-9
PubChem CID
23665037
Appearance
Off-white to light yellow solid powder
Boiling Point
576.3ºC at 760 mmHg
Melting Point
207-210 (dec.)(lit.)ºC
Flash Point
302.3ºC
LogP
3.601
Hydrogen Bond Donor Count
7
Hydrogen Bond Acceptor Count
10
Rotatable Bond Count
5
Heavy Atom Count
30
Complexity
426
Defined Atom Stereocenter Count
1
SMILES
C1=C(C=C(C(=C1I)OC2=CC(=C(C(=C2)I)O)I)I)C[C@@H](C(=O)[O-])N.O.O.O.O.O.[Na+]
InChi Key
JMHCCAYJTTWMCX-QWPJCUCISA-M
InChi Code
InChI=1S/C15H11I4NO4.Na.5H2O/c16-8-4-7(5-9(17)13(8)21)24-14-10(18)1-6(2-11(14)19)3-12(20)15(22)23;;;;;;/h1-2,4-5,12,21H,3,20H2,(H,22,23);;5*1H2/q;+1;;;;;/p-1/t12-;;;;;;/m0....../s1
Chemical Name
sodium;(2S)-2-amino-3-[4-(4-hydroxy-3,5-diiodophenoxy)-3,5-diiodophenyl]propanoate;pentahydrate
Synonyms
Levothyroxine sodium; L-Thyroxine sodium; 55-03-8; Euthyrox; Unithroid; levothroid; Levoxyl; Novothyrox;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~62.5 mg/mL (~78.24 mM)
0.5 M NaOH : 25 mg/mL (~31.29 mM)
H2O : ~14 mg/mL (~17.53 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (2.60 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.08 mg/mL (2.60 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.2518 mL 6.2590 mL 12.5180 mL
5 mM 0.2504 mL 1.2518 mL 2.5036 mL
10 mM 0.1252 mL 0.6259 mL 1.2518 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Study of XP-8121 For the Treatment of Adult Subjects With Hypothyroidism
CTID: NCT05823012
Phase: Phase 2
Status: Completed
Date: 2024-07-26
Fasting Study of Levothyroxine Sodium Tablets 300 mcg to Synthroid® Tablets 300 mcg
CTID: NCT00648882
Phase: Phase 1
Status: Completed
Date: 2024-04-24
Fasting Study of Levothyroxine Sodium Tablets 200 mg to Synthroid Tablets 200 mg
CTID: NCT00648557
Phase: Phase 1
Status: Completed
Date: 2024-04-24
Use of Tirosint®-SOL or Tablet Formulations of Levothyroxine in Pediatric Patients With Congenital Hypothyroidism (CH)
CTID: NCT05228184
Phase: Phase 4
Status: Active, not recruiting
Date: 2024-04-15
Eltroxin Administration to Patients With Extremely Low T4 Values in the Intensive Care Unit
CTID: NCT06154382
Status: Not yet recruiting
Date: 2024-03-15
Related Products
Contact Us