Size | Price | Stock | Qty |
---|---|---|---|
500mg |
|
||
1g |
|
||
2g |
|
||
5g |
|
||
10g |
|
||
Other Sizes |
|
Purity: ≥98%
Levothyroxine (also known as L-Thyroxine; T4), a synthetic hormone derived from the thyroid gland, is used in the treatment of hypothyroidism (deficiency of the thyroid hormones). DIO enzymes convert biologically active thyroid hormone (Triiodothyronine,T3) from L-Thyroxine (T4). Thyroxine is synthesized via the iodination of tyrosines (monoiodotyrosine) and the coupling of iodotyrosines (diiodotyrosine) in the thyroglobulin. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form triiodothyronine which exerts a broad spectrum of stimulatory effects on cell metabolism.
Targets |
Endogenous Metabolite; synthetic form of the thyroid hormone thyroxine (T4)
|
---|---|
ln Vitro |
Levothyroxine treatment generates an abnormal uterine contractility patterns in an in vitro animal model[2]
Screening of thyroid function confirmed a hypothyroid state for all rats under iodine-free diet to which T4 was subsequently administered to counterbalance hypothyroidism. Results demonstrate that hypothyroidism significantly decreased contractile duration (-17%) and increased contractile frequency (+26%), while high doses of T4 increased duration (+200%) and decreased frequency (-51%). These results thus mimic the pattern of abnormal contractions previously observed in uterine tissue from T4-treated hypothyroid pregnant women. Conclusion: Our data suggest that changes in myometrial reactivity are induced by T4 treatment. Thus, in conjunction with our previous observations on human myometrial strips, management of hypothyroidism should be improved to reduce the rate of C-sections in this group of patients[2]. |
ln Vivo |
Adrenaline (cortogen) is converted to active adrenal cortex by the enzyme deiodinase (DIO), and the levels of TSH, the catalytic adrenaline, are correlated with this response. The adrenal cortex gets activated by DIO1 and DIO2, and gets deactivated by DIO3. In the negative feedback regulation of pituitary TSH, the actions of DIO1 and DIO2 are decisive [1]. The modulation of ion channels, pumps, and regulatory contractions is well-established for thyroxine (T3) and L-thyroxine (T4). Furthermore, it has been demonstrated that androgens influence charging excitation, calcium replenishment, contractile mortality, and the regulation of drug control and feeding by L-thyroxine and triiodothyronine. Significantly reduced levels of triiodothyronine and L-thyroxine were detected in the cohort fed an iodine-free diet for 12 weeks, as compared to the control group fed a regular diet (p<0.001). A rise in L-thyroxine levels (p=0.02) was noted in the group receiving low-dose L-thyroxine treatment, although triiodothyronine levels (p=0.19) remained nearly uniform with headache severity. Increases in circulation concentrations of triiodothyronine and L-thyroxine were observed after treatment with high-dose L-thyroxine as compared to the hypothyroid group that did not receive treatment (p<0.001 and p=0.004, each). Comparing the levels of thyroid hormone to the control values, there was a significant rise (p=0.03).
Thyroid hormones play a vital role in the human body for growth and differentiation, regulation of energy metabolism, and physiological function. Hypothyroidism is a common endocrine disorder, which generally results from diminished normal circulating concentrations of serum thyroxine (fT4) and triiodothyronine (fT3). The primary choice in hypothyroidism treatment is oral administration of levothyroxine (L-T4), a synthetic T4 hormone, as approximately 100-125 μg/day. Generally, dose adjustment is made by trial and error approach. However, there are several factors which might influence bioavailability of L-T4 treatment. Genetic background could be an important factor in hypothyroid patients as well as age, gender, concurrent medications and patient compliance. The concentration of thyroid hormones in tissue is regulated by both deiodinases enzyme and thyroid hormone transporters. In the present study, it was aimed to evaluate the effects of genetic differences in the proteins and enzymes (DIO1, DIO2, TSHR, THR and UGT) which are efficient in thyroid hormone metabolism and bioavailability of L-T4 in Turkish population. According to our findings, rs225014 and rs225015 variants in DIO2, which catalyses the conversion of thyroxine (pro-hormone) to the active thyroid hormone, were associated with TSH levels. It should be given lower dose to the patients with rs225014 TT and rs225015 GG genotypes in order to provide proper treatment with higher effectivity and lower toxicity.[1] |
Cell Assay |
Biochemical techniques[2]
ELISA assays were performed using a standard rat Thyroxine (T4) and T3 ELISA kit according to the manufacturer's protocol. Western blot analysis was performed exactly as previously described. |
Animal Protocol |
Female non-pregnant Sprague-Dawley rats (N = 22) were used and divided into four groups: 1) control, 2) hypothyroidism, 3) hypothyroidism treated with low T4 doses (20 μg/kg/day) and 4) with high T4 doses (100 μg/kg/day). Hypothyroidism was induced by an iodine-deficient diet. Isometric tension measurements were performed in vitro on myometrium tissues in isolated organ baths. Contractile activity parameters were quantified (amplitude, duration, frequency and area under the curve) using pharmacological tools to assess their effect.[2]
Sprague–Dawley female rats (N = 22) were used. Non-pregnant rats were divided into four groups: 1) control, 2) hypothyroidism, 3) hypothyroidism treated with low doses of Levothyroxine (T4) (20 μg/kg/day) and 4) with high doses of T4 (100 μg/kg/day). Control rats (group 1) were fed with standard diet (TD.120461, Harlan laboratories, Madison, WI) while the intervention rats were fed with iodine-free diet for 12 weeks to induce hypothyroidism (groups 2–4) which was continued for four more weeks to allow screening of hypothyroid status and T4-treatment. Food and water (iodine-free diet) were available ad libitum. The hypothyroid group treated with low (group 3) or high doses of T4 (group 4) were injected intraperitoneally every 24 h with respectively 20 μg/kg/day and 100 μg/kg/day as previously described by Medeiros. Blood samples were collected for thyroid function screening at week 12 and 16 following the initiation of either the control or iodine-free diet. Hysterectomy was performed under general anesthesia (isoflurane 2%) at the end of the treatment and the two uterine horns were placed in physiological Krebs' solution until isometric tension measurements within no more than 1 h.[2] |
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Absorption of orally administered T4 from the gastrointestinal tract ranges from 40% to 80% with the majority of the levothyroxine dose absorbed from the jejunum and upper ileum. T4 absorption is increased by fasting, and decreased in malabsorption syndromes and by certain foods such as soybeans, milk, and dietary fiber. Absorption may also decrease with age. In addition, many drugs affect T4 absorption including bile acide sequestrants, sucralfate, proton pump inhibitors, and minerals such as calcium (including in yogurt and milk products), magnesium, iron, and aluminum supplements. To prevent the formation of insoluble chelates, levothyroxine should generally be taken on an empty stomach at least 2 hours before a meal and separated by at least 4 hours from any interacting agents. Thyroid hormones are primarily eliminated by the kidneys. A portion of the conjugated hormone reaches the colon unchanged and is eliminated in the feces. Approximately 20% of T4 is eliminated in the stool. Urinary excretion of T4 decreases with age. Circulating thyroid hormones are greater than 99% bound to plasma proteins, including thyroxine-binding globulin (TBG), thyroxine-binding prealbumin (TBPA), and albumin (TBA), whose capacities and affinities vary for each hormone. The higher affinity of both TBG and TBPA for T4 partially explains the higher serum levels, slower metabolic clearance, and longer half-life of T4 compared to T3. Protein-bound thyroid hormones exist in reverse equilibrium with small amounts of free hormone. Only unbound hormone is metabolically active. Many drugs and physiologic conditions affect the binding of thyroid hormones to serum proteins. Thyroid hormones do not readily cross the placental barrier. Levothyroxine Sodium for Injection is administered via the intravenous route. Following administration, the synthetic levothyroxine cannot be distinguished from the natural hormone that is secreted endogenously. Absorption of orally administered T4 from the gastrointestinal (GI) tract ranges from 40% to 80%. The majority of the levothyroxine dose is absorbed from the jejunum and upper ileum. The relative bioavailability of Synthroid tablets, compared to an equal nominal dose of oral levothyroxine sodium solution, is approximately 93%. T4 absorption is increased by fasting, and decreased in malabsorption syndromes and by certain foods such as soybean infant formula. Dietary fiber decreases bioavailability of T4. Absorption may also decrease with age. In addition, many drugs and foods affect T4 absorption. Levothyroxine is variably absorbed from the GI tract (range: 40-80%). In animals, levothyroxine is absorbed in the proximal and middle jejunum; the drug is not absorbed from the stomach or distal colon and little, if any, absorption occurs in the duodenum. Studies in humans indicate that levothyroxine is absorbed from the jejunum and ileum and some absorption also occurs in the duodenum. The degree of absorption of levothyroxine from the GI tract depends on the product formulation and type of intestinal contents, including plasma protein and soluble dietary factors that may bind thyroid hormone and make it unavailable for diffusion. In addition, concurrent oral administration of infant soybean formula, soybean flour, cotton seed meal, walnuts, foods containing large amounts of fiber, ferrous sulfate, antacids, sucralfate, calcium carbonate, cation-exchange resins (e.g., sodium polystyrene sulfonate), simethicone, or bile acid sequestrants may decrease absorption of levothyroxine. The extent of levothyroxine absorption is increased in the fasting state and decreased in malabsorption states (e.g., sprue); absorption also may decrease with age. For more Absorption, Distribution and Excretion (Complete) data for LEVOTHYROXINE (7 total), please visit the HSDB record page. Metabolism / Metabolites Approximately 70% of secreted T4 is deiodinated to equal amounts of T3 and reverse triiodothyronine (rT3), which is calorigenically inactive. T4 is slowly eliminated through its major metabolic pathway to T3 via sequential deiodination, where approximately 80% of circulating T3 is derived from peripheral T4. The liver is the major site of degradation for both T4 and T3, with T4 deiodination also occurring at a number of additional sites, including the kidney and other tissues. Elimination of T4 and T3 involves hepatic conjugation to glucuronic and sulfuric acids. The hormones undergo enterohepatic circulation as conjugates are hydrolyzed in the intestine and reabsorbed. Conjugated compounds that reach the colon are hydrolyzed and eliminated as free compounds in the feces. Other minor T4 metabolites have been identified. Yields l-tyrosine in rabbit, in rat /From table/ Yields 3,3',5-triiodo-L-thyronine in man, rat, dog, rabbit. /From table/ Yields l-thyroxine-4'-beta-d-glucuronide in dog, in man, in rat. Yields l-thyroxine-4'-sulfate in dog. /From table/ Yields 3,3',5,5'-tetraiodothyropyruvic acid in rat. Yields l-thyronine in rat. /From table/ Yields 3,3'-diiodo-l-thyronine in dog. Yields 3,3',5,5'-tetraiodothyroacetic acid in man, in rat. /From table/ Biological Half-Life T4 half-life is 6 to 7 days. T3 half-life is 1 to 2 days. In dogs orally administered levothyroxine has relatively ... short elimination half life when compared to humans. ... The serum half life is approximately 12-16 hours. The usual plasma half-lives of thyroxine and triiodothyronine are 6-7 days and approximately 1-2 days, respectively. The plasma half-lives of thyroxine and triiodothyronine are decreased in patients with hyperthyroidism and increased in those with hypothyroidism. |
Toxicity/Toxicokinetics |
Toxicity Summary
IDENTIFICATION AND USE: Levothyroxine occurs as crystals or needles. As a drug, levothyroxine sodium is used as replacement or supplemental therapy in congenital or acquired hypothyroidism. It is also used in the treatment or prevention of various types of euthyroid goiters, including thyroid nodules, subacute or chronic lymphocytic thyroiditis (Hashimoto's thyroiditis), multinodular goiter and, as an adjunct to surgery and radioiodine therapy in the management of thyrotropin-dependent well-differentiated thyroid cancer. The injection form of levothyroxine sodium is indicated for the treatment of myxedema coma. Levothyroxine has also been used in veterinary medicine. HUMAN EXPOSURE AND TOXICITY: The signs and symptoms of levothyroxine overdosage are those of hyperthyroidism. In addition, confusion and disorientation may occur. Cerebral embolism, shock, coma, and death have been reported. Studies indicate that careful attention is necessary when initiating the administration of levothyroxine sodium to very-low-birth-weight infants. Ingestion of levothyroxine in children typically follows a benign course, but overdose can result in significant complications, including seizures and arrhythmias, both of which should be monitored for. In one genotoxicity study, the ability of thyroxine to induce sister chromatid exchange and micronuclei was tested in cultured human lymphocytes. Thyroxine exhibited weak clastogenic effects only at high concentrations. ANIMAL STUDIES: A single acute overdose in small animals is less likely to cause severe thyrotoxicosis than chronic overdosage. Vomiting, diarrhea, transition from hyperactivity to lethargy, hypertension, tachycardia, tachypnea, dyspnea, and abnormal pupillary light reflexes may be noted in dogs and cats. In dogs, clinical signs may appear within 1-9 hours after ingestion. Four pregnant New Zealand white rabbits received intramuscular levothyroxine at 250 ug/kg on days 25 and 26 of gestation. Maternal and fetal plasma-free levothyroxine concentration was higher than in controls, with the highest concentration noted at 14 days of neonatal period. Treatment resulted in fetal hyperglycemia and depletion of fetal liver glycogen content. Animal studies have not been performed to evaluate levothyroxine carcinogenic potential, mutagenic potential or effects on fertility. Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation Levothyroxine (T4) is a normal component of human milk. Limited data on exogenous replacement doses of levothyroxine during breastfeeding indicate no adverse effects in infants. The American Thyroid Association recommends that subclinical and overt hypothyroidism should be treated with levothyroxine in lactating women seeking to breastfeed. Adequate levothyroxine treatment during lactation may normalize milk production in hypothyroid lactating mothers with low milk supply. Levothyroxine dosage requirement may be increased in the postpartum period compared to prepregnancy requirements in patients with Hashimoto's thyroiditis. ◉ Effects in Breastfed Infants Effects of exogenous thyroid hormone administration to mothers on their infant have not been reported. One case of apparent mitigation of cretinism in hypothyroid infants by breastfeeding has been reported, but the amounts of thyroid hormones in milk are not optimal, and this result has been disputed. The thyroid hormone content of human milk from the mothers of very preterm infants appears not to be sufficient to affect the infants' thyroid status. The amounts of thyroid hormones in milk are apparently not sufficient to interfere with diagnosis of hypothyroidism. In a telephone follow-up study, 5 nursing mothers reported taking levothyroxine (dosage unspecified). The mothers reported no adverse reactions in their infants. One mother who had undergone a thyroidectomy was taking levothyroxine 100 mcg daily as well as calcium carbonate and calcitriol. Her breastfed infant was reportedly "thriving" at 3 months of age. A woman with propionic acidemia took levothyroxine 50 mcg daily as well as biotin, carnitine, and various amino acids while exclusively breastfeeding her infant for 2 months and nonexclusively for 10 months. At that time, the infant had normal growth and development. ◉ Effects on Lactation and Breastmilk Adequate thyroid hormone serum levels are required for normal lactation. Replacing deficient thyroid levels should improve milk production caused by hypothyroidism. Supraphysiologic doses would not be expected to further improve lactation. Protein Binding Circulating thyroid hormones are greater than 99% bound to plasma proteins, including thyroxine-binding globulin (TBG), thyroxine-binding prealbumin (TBPA) and albumin (TBA). The higher affinity of both TBG and TBPA for T4 partially explains the higher serum levels, slower metabolic clearance and longer half-life of T4 compared to T3. Protein-bound thyroid hormones exist in reverse equilibrium with small amounts of free hormone where only unbound hormone is metabolically active. Interactions Antacids (e.g., aluminum hydroxide, magnesium hydroxide, calcium carbonate), simethicone, and sucralfate bind thyroid agents in the GI tract and delay or prevent their absorption. Calcium carbonate may form an insoluble chelate with levothyroxine, resulting in decreased levothyroxine absorption and increased serum thyrotropin concentrations; in vitro studies indicate that levothyroxine binds to calcium carbonate at acidic pH levels. To minimize or prevent this interaction, some clinicians recommend that these agents be administered approximately 4 hours apart when the drugs must be used concurrently with thyroid agents. Serum concentrations of digitalis glycosides may be decreased in patients with hyperthyroidism or in patients with hypothyroidism in whom a euthyroid state has been achieved. Thus, therapeutic effects of digitalis glycosides may be reduced in these patients. Drugs that induce hepatic microsomal enzymes (e.g., carbamazepine, phenytoin, phenobarbital, rifampin) may accelerate metabolism of thyroid agents, resulting in increased thyroid agent dosage requirements. Phenytoin and carbamazepine also reduce serum protein binding of levothyroxine, and total- and free-T4 may be reduced by 20-40%, but most patients have normal serum concentrations of thyrotropin (thyroid-stimulating hormone, TSH) and are clinically euthyroid. /Thyroid agents/ Bile acid sequestrants (e.g., cholestyramine resin, colestipol) bind thyroid agents in the GI tract and substantially impair their absorption. In vitro studies indicate that the binding is not readily reversible. To minimize or prevent this interaction, these agents should be administered at least 4 hours apart when the drugs must be used concurrently. For more Interactions (Complete) data for LEVOTHYROXINE (14 total), please visit the HSDB record page. |
References |
[1]. Arici M, et al. Association between genetic polymorphism and levothyroxine bioavailability in hypothyroid patients. Endocr J. 2018 Mar 28;65(3):317-323.
[2]. Corriveau S, et al. Levothyroxine treatment generates an abnormal uterine contractility patterns in an in vitro animalmodel. J Clin Transl Endocrinol. 2015 Sep 9;2(4):144-149 |
Additional Infomation |
Therapeutic Uses
/CLINICAL TRIALS/ ClinicalTrials.gov is a registry and results database of publicly and privately supported clinical studies of human participants conducted around the world. The Web site is maintained by the National Library of Medicine (NLM) and the National Institutes of Health (NIH). Each ClinicalTrials.gov record presents summary information about a study protocol and includes the following: Disease or condition; Intervention (for example, the medical product, behavior, or procedure being studied); Title, description, and design of the study; Requirements for participation (eligibility criteria); Locations where the study is being conducted; Contact information for the study locations; and Links to relevant information on other health Web sites, such as NLM's MedlinePlus for patient health information and PubMed for citations and abstracts for scholarly articles in the field of medicine. Levothyroxine is included in the database. Levothyroxine sodium is used ... as replacement or supplemental therapy in congenital or acquired hypothyroidism of any etiology, except transient hypothyroidism during the recovery phase of subacute thyroiditis. Specific indications include: primary (thyroidal), secondary (pituitary), and tertiary (hypothalamic) hypothyroidism and subclinical hypothyroidism. Primary hypothyroidism may result from functional deficiency, primary atrophy, partial or total congenital absence of the thyroid gland, or from the effects of surgery, radiation, or drugs, with or without the presence of goiter. /Included in US product label/ Levothyroxine sodium is used ... in the treatment or prevention of various types of euthyroid goiters, including thyroid nodules, subacute or chronic lymphocytic thyroiditis (Hashimoto's thyroiditis), multinodular goiter and, as an adjunct to surgery and radioiodine therapy in the management of thyrotropin-dependent well-differentiated thyroid cancer. /Included in US product label/ Levothyroxine Sodium for Injection is indicated for the treatment of myxedema coma. Important Limitations of Use: The relative bioavailability between Levothyroxine Sodium for Injection and oral levothyroxine products has not been established. Caution should be used when switching patients from oral levothyroxine products to Levothyroxine Sodium for Injection as accurate dosing conversion has not been studied. /Included in US product label/ For more Therapeutic Uses (Complete) data for LEVOTHYROXINE (6 total), please visit the HSDB record page. Drug Warnings /BOXED WARNING/ WARNING: NOT FOR TREATMENT OF OBESITY OR FOR WEIGHT LOSS. Thyroid hormones, including Levothyroxine Sodium for Injection, should not be used for the treatment of obesity or for weight loss. Larger doses may produce serious or even life threatening manifestations of toxicity. /BOXED WARNING/ WARNING: Thyroid hormones, including Synthroid, either alone or with other therapeutic agents, should not be used for the treatment of obesity or for weight loss. In euthyroid patients, doses within the range of daily hormonal requirements are ineffective for weight reduction. Larger doses may produce serious or even life threatening manifestations of toxicity, particularly when given in association with sympathomimetic amines such as those used for their anorectic effects. Excessive bolus dosing of Levothyroxine Sodium for Injection (greater than 500 ug) are associated with cardiac complications, particularly in the elderly and in patients with an underlying cardiac condition. Adverse events that can potentially be related to the administration of large doses of Levothyroxine Sodium for Injection include arrhythmias, tachycardia, myocardial ischemia and infarction, or worsening of congestive heart failure and death. Cautious use, including doses in the lower end of the recommended range, may be warranted in these populations. Close observation of the patient following the administration of Levothyroxine Sodium for Injection is advised. Studies performed to date have not demonstrated pediatrics-specific problems that would limit the usefulness of thyroid hormones in children. However, caution is necessary in interpreting results of thyroid function tests in neonates, because serum T4 concentrations are transiently elevated and serum T4 concentrations are transiently low, and the infant pituitary is relatively insensitive to the negative feedback effect of thyroid hormones. /Thyroid hormones/ For more Drug Warnings (Complete) data for LEVOTHYROXINE (17 total), please visit the HSDB record page. Pharmacodynamics Oral levothyroxine is a synthetic hormone that exerts the same physiologic effect as endogenous T4, thereby maintaining normal T4 levels when a deficiency is present. Levothyroxine has a narrow therapeutic index and is titrated to maintain a euthyroid state with TSH (thyroid stimulating hormone) within a therapeutic range of 0.4–4.0 mIU/L. Over- or under-treatment with levothyroxine may have negative effects on growth and development, cardiovascular function, bone metabolism, reproductive function, cognitive function, emotional state, gastrointestinal function and glucose and lipid metabolism. The dose of levothyroxine should be titrated slowly and carefully and patients should be monitored for their response to titration to avoid these effects. TSH levels should be monitored at least yearly to avoid over-treating with levothyroxine which can result in hyperthyroidism (TSH <0.1mIU/L) and symptoms of increased heart rate, diarrhea, tremor, hypercalcemia, and weakness to name a few. As many cardiac functions including heart rate, cardiac output, and systemic vascular resistance are closely linked to thyroid status, over-treatment with levothyroxine may result in increases in heart rate, cardiac wall thickness, and cardiac contractility and may precipitate angina or arrhythmias, particularly in patients with cardiovascular disease and in elderly patients. In populations with any cardiac concerns, levothyroxine should be initiated at lower doses than those recommended in younger individuals or in patients without cardiac disease. Patients receiving concomitant levothyroxine and sympathomimetic agents should be monitored for signs and symptoms of coronary insufficiency. If cardiac symptoms develop or worsen, reduce the levothyroxine dose or withhold for one week and restart at a lower dose. Increased bone resorption and decreased bone mineral density may occur as a result of levothyroxine over-replacement, particularly in post-menopausal women. The increased bone resorption may be associated with increased serum levels and urinary excretion of calcium and phosphorous, elevations in bone alkaline phosphatase and suppressed serum parathyroid hormone levels. Administer the minimum dose of levothyroxine that achieves the desired clinical and biochemical response to mitigate this risk. Addition of levothyroxine therapy in patients with diabetes mellitus may worsen glycemic control and result in increased antidiabetic agent or insulin requirements. Carefully monitor glycemic control after starting, changing or discontinuing levothyroxine. |
Molecular Formula |
C15H11I4NO4
|
---|---|
Molecular Weight |
776.8700
|
Exact Mass |
776.686
|
Elemental Analysis |
C, 23.19; H, 1.43; I, 65.34; N, 1.80; O, 8.24
|
CAS # |
51-48-9
|
Related CAS # |
Thyroxine sulfate;77074-49-8;L-Thyroxine sodium salt pentahydrate;6106-07-6;L-Thyroxine sodium;55-03-8;L-Thyroxine-13C6-1;1217780-14-7;Biotin-(L-Thyroxine);149734-00-9;Biotin-hexanamide-(L-Thyroxine);2278192-78-0;Thyroxine hydrochloride-13C6;1421769-38-1;L-Thyroxine-13C6;720710-30-5;L-Thyroxine-13C6,15N;1431868-11-9
|
PubChem CID |
5819
|
Appearance |
Crystals
Needles |
Density |
2.6±0.1 g/cm3
|
Boiling Point |
576.3±50.0 °C at 760 mmHg
|
Melting Point |
235 °C
|
Flash Point |
302.3±30.1 °C
|
Vapour Pressure |
0.0±1.7 mmHg at 25°C
|
Index of Refraction |
1.795
|
LogP |
5.93
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
24
|
Complexity |
420
|
Defined Atom Stereocenter Count |
1
|
SMILES |
IC1C(=C(C([H])=C(C=1[H])C([H])([H])[C@@]([H])(C(=O)O[H])N([H])[H])I)OC1C([H])=C(C(=C(C=1[H])I)O[H])I
|
InChi Key |
XUIIKFGFIJCVMT-LBPRGKRZSA-N
|
InChi Code |
InChI=1S/C15H11I4NO4/c16-8-4-7(5-9(17)13(8)21)24-14-10(18)1-6(2-11(14)19)3-12(20)15(22)23/h1-2,4-5,12,21H,3,20H2,(H,22,23)/t12-/m0/s1
|
Chemical Name |
(S)-2-amino-3-(4-(4-hydroxy-3,5-diiodophenoxy)-3,5-diiodophenyl)propanoic acid
|
Synonyms |
L-Thyroxin, L Thyroxin, T4, Levothyroxine sodium, Levothyroxine sodium pentahydrate, Thyroxine; L-thyroxine; 51-48-9; thyroxine; thyroxin; Levothyroxin; Tetraiodothyronine; 3,3',5,5'-Tetraiodo-L-thyronine;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~250 mg/mL (~321.80 mM)
1M NaOH : 5 mg/mL (~6.44 mM) H2O : < 0.1 mg/mL |
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.08 mg/mL (2.68 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.08 mg/mL (2.68 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.08 mg/mL (2.68 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.2872 mL | 6.4361 mL | 12.8722 mL | |
5 mM | 0.2574 mL | 1.2872 mL | 2.5744 mL | |
10 mM | 0.1287 mL | 0.6436 mL | 1.2872 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT05174000 | COMPLETED | Drug: Test Euthyrox® Drug: Reference Euthyrox® |
Healthy | Merck Healthcare KGaA, Darmstadt, Germany, an affiliate of Merck KGaA, Darmstadt, Germany |
2022-01-10 | Phase 1 |
NCT06073665 | RECRUITING | Drug: Levothyroxine Sodium | Hypothyroidism | University of Pennsylvania | 2024-01-31 | Phase 4 |
NCT03094416 | COMPLETEDWITH RESULTS | Drug: levothyroxine sodium capsule Drug: Proton pump inhibitor (PPI) Drug: Levothyroxine Sodium (LT4) Tablets |
Hypothyroidism;Postablative | IBSA Institut Biochimique SA | 2018-07-30 | Phase 4 |
NCT06135948 | COMPLETED | Drug: Extra dose of L-thyroxine, 25 mcg during Ramadan |
L-thyroxine | Emirates Health Services (EHS) | 2022-03-15 | Phase 4 |
NCT04037748 | COMPLETEDWITH RESULTS | Drug: Puran T4® Drug: Eutirox® |
Healthy | Merck Healthcare KGaA, Darmstadt, Germany, an affiliate of Merck KGaA, Darmstadt, Germany |
2019-06-25 | Phase 1 |
Screening of thyroid function to confirm hypothyroid status. ELISA were performed to measure T3 (A) and T4 (B) concentrations (N = 6/group). (C) Detection of Deiodinase type 1 (DIO1) in uterine tissues obtained from control, hypothyroid and levothyroxine (T4)-treated non-pregnant rats. (D) Western blot quantification. This figure is representative of 5 identical experiments. *p < 0.05.[2].Levothyroxine treatment generates an abnormal uterine contractility patterns in an in vitro animalmodel. J Clin Transl Endocrinol. 2015 Sep 9;2(4):144-149. td> |
Spontaneous in vitro uterine contractile activity in control, iodine-deficient and T4-treated non-pregnant rat groups. Typical recordings in control (A), under iodine deficiency (B) and in 20 μg/kg (C) and 100 μg/kg (D) levothyroxine (T4)-treated rats under iodine deficiency conditions.[2].Levothyroxine treatment generates an abnormal uterine contractility patterns in an in vitro animalmodel. J Clin Transl Endocrinol. 2015 Sep 9;2(4):144-149 td> |