yingweiwo

LGD-6972

Alias: MB11262; LGD6972; MB 11262; LGD 6972; MB-11262; LGD-6972
Cat No.:V2961 Purity: ≥98%
LGD-6972 (LGD6972; MB-11262) is a novel and orally bioavailable glucagon receptor antagonist with the potential to be used for treating type 2 diabetes (T2DM).
LGD-6972
LGD-6972 Chemical Structure CAS No.: 1207989-09-0
Product category: GCGR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of LGD-6972:

  • LGD-6972 sodium
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

LGD-6972 (LGD6972; MB-11262) is a novel and orally bioavailable glucagon receptor antagonist with the potential to be used for treating type 2 diabetes (T2DM). In subjects with type 2 diabetes and those in good health, its linear plasma pharmacokinetics are consistent with a once-daily dosage. Additionally, it lowers postprandial plasma glucose levels. There are dose-dependent rises in fasting plasma glucagon, but in T2DM subjects, glucagon levels fall and insulin levels rise following an oral glucose load. The reduction in glucose levels observed in both T2DM patients and healthy individuals was linked to LGD-6972's inhibition of glucagon action. This effect was significant enough to forecast improvements in glycaemic control in T2DM patients who received longer treatment durations. Continued clinical development of LGD-6972 is supported by its safety and pharmacological profile after 14 days of dosing.

Biological Activity I Assay Protocols (From Reference)
ln Vitro

In vitro activity: LGD-6972 suppresses the production of glucose and cAMP by binding competitively and selectively to the glucagon receptor (GCGR)[1].

ln Vivo
LGD-6972 lowers both the hyperglycemia seen in diabetic mouse models and acute glucagon-stimulated hyperglycemia. It appears that blocking glucagon receptor signaling is the main mechanism behind LGD-6972's pharmacological action[1].
Animal Protocol
In healthy and T2DM subjects, LGD-6972 exhibits linear plasma pharmacokinetics compatible with a once-daily dosage that is comparable. All groups show dose-dependent reductions in fasting plasma glucose, which peak at 3.15 mM (56.8 mg/dL) in T2DM subjects on day 14. In the postprandial phase, plasma glucose is likewise decreased by LGD-6972. In T2DM subjects, there are dose-dependent increases in fasting plasma glucagon, but following an oral glucose load, glucagon levels fall and insulin levels rise. At the tested doses, LGD-6972 is well tolerated and does not cause dose-related or clinically significant alterations in clinical laboratory parameters. Hypoglycemia does not occur in any subject.
References

[1]. Pharmacokinetics and pharmacodynamics of single and multiple doses of the glucagon receptor antagonist LGD-6972 in healthy subjects and subjects with type 2 diabetes mellitus. Diabetes Obes Metab. 2017 Jan;19(1):24-32.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C43H46N2O5S
Molecular Weight
702.9008
Exact Mass
702.31
Elemental Analysis
C, 73.48; H, 6.60; N, 3.99; O, 11.38; S, 4.56
CAS #
1207989-09-0
Related CAS #
1207989-22-7 (sodium); 1207989-09-0 (free)
Appearance
Solid powder
InChi Key
HKJMCBYPVCGZFB-LDLOPFEMSA-N
InChi Code
InChI=1S/C43H46N2O5S/c1-28-25-29(2)40(30(3)26-28)35-17-21-38(22-18-35)45-42(47)39(27-31-7-9-36(10-8-31)41(46)44-23-24-51(48,49)50)34-13-11-32(12-14-34)33-15-19-37(20-16-33)43(4,5)6/h7-22,25-26,39H,23-24,27H2,1-6H3,(H,44,46)(H,45,47)(H,48,49,50)/t39-/m1/s1
Chemical Name
2-[[4-[(2R)-2-[4-(4-tert-butylphenyl)phenyl]-3-oxo-3-[4-(2,4,6-trimethylphenyl)anilino]propyl]benzoyl]amino]ethanesulfonic acid
Synonyms
MB11262; LGD6972; MB 11262; LGD 6972; MB-11262; LGD-6972
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~125 mg/mL (~177.8 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (2.96 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (2.96 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (2.96 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.4227 mL 7.1134 mL 14.2268 mL
5 mM 0.2845 mL 1.4227 mL 2.8454 mL
10 mM 0.1423 mL 0.7113 mL 1.4227 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02250222 Completed Drug: LGD-6972
Drug: Placebo (Captisol ®)
Type 2 Diabetes Mellitus Ligand Pharmaceuticals October 2014 Phase 1
NCT02672839 Completed Drug: LGD-6972 Solution
Drug: LGD-6972 Capsules
Type 2 Diabetes Mellitus
(T2DM)
Ligand Pharmaceuticals February 2016 Phase 1
NCT01919684 Completed Drug: LGD-6972
Drug: Placebo (Captisol®)
Type 2 Diabetes Mellitus Ligand Pharmaceuticals November 2013 Phase 1
NCT02851849 Completed Drug: LGD-6972-5 mg
Drug: LGD-6972-10 mg
Drug: LGD-6972-15 mg
Type 2 Diabetes Mellitus Ligand Pharmaceuticals September 2016 Phase 2
Biological Data
  • LGD-6972

    Mean (± SEM) plasma LGD‐6972 concentration versus time profiles by dose for healthy and T2DM subjects in the SAD and the MAD studies.2017 Jan;19(1):24-32.
  • LGD-6972

    Mean (± SEM) change from baseline fasting plasma glucose (FPG) versus time profiles for healthy and T2DM subjects in the SAD and the MAD studies who received PBO or LGD‐6972,2017 Jan;19(1):24-32.

  • LGD-6972

    Effect of LGD‐6972 on mean (± SEM) plasma glucose, glucagon and insulin levels in response to an oral glucose load during an oral glucose tolerance test in the MAD study.2017 Jan;19(1):24-32.
Contact Us