yingweiwo

LHF-535

Alias: LHF535; LHF 535; LHF-535
Cat No.:V32815 Purity: ≥98%
LHF-535 (LHF535) is a novel and potent antiviral agentwith EC50s of <1 μM, <1 μM, <1 μM, and 1-10 μM for Lassa, Machupo, Junin, and VSVg virus, respectively.
LHF-535
LHF-535 Chemical Structure CAS No.: 1450929-77-7
Product category: Arenavirus
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

LHF-535 (LHF535) is a novel and potent antiviral agent with EC50s of <1 μM, <1 μM, <1 μM, and 1-10 μM for Lassa, Machupo, Junin, and VSVg virus, respectively.

Biological Activity I Assay Protocols (From Reference)
Targets
Antiviral; Arenavirus envelope glycoprotein
ln Vitro
LHF-535 is a small-molecule viral entry inhibitor that targets the arenavirus envelope glycoprotein (GP).Strong antiviral activity is shown by LHF-535 against a variety of hemorrhagic fever arenaviruses. With an IC50 of 0.1-0.3 nM, LHF-535 inhibits Lassa GP-pseudotyped lentivirus[2].
ln Vivo
LHF-535 (3, 10 or 30 mg/kg; orally; daily; 14 days) significantly lowers viral titers in plasma, spleen, and liver while shielding mice against a deadly Tacaribe virus challenge.Delaying the first dose of LHF-535 (10 mg/kg) by 1, 2, or 3 days after infection also results in an increase in survival, indicating the effectiveness of LHF-535 as a post-exposure therapeutic in mice[2].
Enzyme Assay
Antiviral assays[2]
Junín virus yield-reduction assay[2]
Virus yield reduction (VYR) experiments were conducted to determine sensitivity to LHF-535 in Junín Romero wild-type and vaccine strains. Varying concentrations of LHF-535 were added to test wells containing 70–80% confluent Vero cells just prior to infection at a multiplicity of infection (MOI) of approximately 0.002. Plates were incubated for 3 days, at which time virus-infected plates were frozen and thawed, and culture supernatants were collected for endpoint titration of infectious virus. The samples were plated on Vero cells and visual cytopathic effect was measured on day 10 post-infection. LHF-535 was tested in triplicate against both Candid#1 and the Romero strain. Work with the pathogenic Romero strain of Junín virus was conducted in a BSL-3+ laboratory by vaccinated personnel.
Tacaribe virus antiviral assay [2]
Vero cells seeded in 96-well plates (5,000 cells per well) were infected with Tacaribe virus at an MOI of 0.1 following addition in triplicate of serial compound dilutions in DMSO. After 3 days, RNA was extracted from cell lysates (Promega SV 96 Total RNA Isolation System) for evaluation of Tacaribe virus RNA via qRT-PCR and the comparative CT method [40]. Briefly, extracted RNA is used to generate cDNA with the High-Capacity RNA-to-cDNA kit (Thermo Fisher Scientific). For TaqMan based qPCR, reactions were performed with the cDNA using the TaqMan Fast Advanced Master Mix (Thermo Fisher Scientific) along with primers and a dual-labeled TaqMan probe set targeting a ~100 nucleotide region of GP (nt 809–912). 18S rRNA (VIC/MGB probe) from Thermo Fisher Scientific was used as internal control.
Pseudotype virus inhibition [2]
293T cells were seeded in opaque 384-well plates (4,000 cells per well). The following day, LHF-535 (dissolved in DMSO) and DMSO alone were dispensed via an HP D300e Digital Dispenser to a final concentration of 0.2% DMSO in all wells. This was followed by addition of a fixed volume of lentiviral pseudovirions, 3 days incubation at 37°C, and measurement of luciferase activity (Promega Bright-Glo Luciferase Assay System). Test concentrations were performed in quadruplicate. Luminescence was averaged for each concentration or control (positive controls received DMSO alone, negative controls were mock-infected) and the 50% effective concentration was calculated using XLfit. Experiments were repeated multiple times to establish an average (geometric mean) EC50; experiments were repeated until the standard error of the mean across multiple experiments was less than one-quarter of the average.
Cell Assay
Cells and viruses
Vero and 293T cells were obtained from the American Type Culture Collection (ATCC; Manassas, VA). Vero cells were maintained in minimal essential medium (MEM) supplemented with 10% fetal bovine serum (HyClone Thermo Scientific, Logan, UT). 293T cells were maintained in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum, 2 mM L-glutamine, penicillin (100 U/ml), and streptomycin (100 μg/ml). Tacaribe virus strain TRVL 11573 was obtained from ATCC. The Candid#1 vaccine strain of Junín virus was provided by Robert Tesh (World Reference Center for Emerging Viruses and Arboviruses, The University of Texas Medical Branch, Galveston, TX). The Candid#1 virus stock (~108 PFU/ml) was generated from a clarified lysate following one passage in African green monkey kidney cells (BS-C-1 from ATCC) and two passages in Vero cells. The molecular clone of the Romero strain of Junín virus was provided by Slobodan Paessler (University of Texas Medical Branch, Galveston, TX). The virus was rescued in baby hamster kidney fibroblasts (BHK-21 obtained from ATCC) and the stock (~108 PFU/ml) was prepared from a single passage in Vero cells. Work with the pathogenic Romero strain of Junín virus was conducted in a BSL-3+ laboratory by vaccinated personnel.[2]
Animal Protocol
Animal Model: IFN-α/β and-γ receptor-deficient AG129 mice[2]
Dosage: 3, 10, or 30 mg/kg/day
Administration: Orally; daily; 14 days
Result: Effective as a post-exposure therapeutic.
Tacaribe virus in vivo model[2]
AG129 mice are IFN-α/β and–γ receptor-deficient mice. They were a kind gift from Michael Diamond (Washington University in St. Louis). For Tacaribe virus studies, we used mice that were sex- and age-matched (6–8 weeks old). All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) and were conducted at Kineta in a BSL-2 facility. Experimental groups were sized (as specified in the figure legends) to allow for statistical analysis, and all animals were included in the analysis. All animal experiments were conducted in a non-blinded fashion.
For the LHF-535 dose titration study, mice were sorted into survival and titer arms and challenged by intraperitoneal (i.p.) injection with 200 PFU of Tacaribe virus. In the survival arm, mice were dosed orally with LHF-535 at 3, 10, or 30 mg/kg/day or with vehicle alone for 14 days with the first dose 30 min prior to infection. Micronized LHF-535 was suspended in 0.5% Methocel E15 and 1% Tween 80. The mice were observed for signs of morbidity and mortality. For the titer arm, mice were sacrificed at 7 days post-challenge; plasma, liver, and spleen samples were collected for assaying virus titers.
For the delayed treatment studies, AG129 mice were split into five groups with each receiving LHF-535 30 min prior, and 24, 48, and 72 h post infection along with a vehicle control group. All mice were challenged by i.p. injection with 200 PFU of Tacaribe virus and dosing ceased 14 days post-challenge. The mice were observed for signs of morbidity and mortality and were humanely removed from study if there were clinical observations of inactivity, labored breathing, or excessive weight loss (≥20%).
For the pathogenesis studies (LD50 determination), AG129 mice were infected with wild-type or mutant Tacaribe virus via i.p. injection using 10-fold serial dilutions of virus. The Reed-Muench method was used for LD50 calculations
References

[1]. Antiviral drugs for treatment of arenavirus infection. WO2013123215A2.

[2]. A potent Lassa virus antiviral targets an arenavirus virulence determinant. PLoS Pathog. 2018 Dec 21;14(12):e1007439.

Additional Infomation
Arenaviruses are a significant cause of hemorrhagic fever, an often-fatal disease for which there is no approved antiviral therapy. Lassa fever in particular generates high morbidity and mortality in West Africa, where the disease is endemic, and a recent outbreak in Nigeria was larger and more geographically diverse than usual. We are developing LHF-535, a small-molecule viral entry inhibitor that targets the arenavirus envelope glycoprotein, as a therapeutic candidate for Lassa fever and other hemorrhagic fevers of arenavirus origin. Using a lentiviral pseudotype infectivity assay, we determined that LHF-535 had sub-nanomolar potency against the viral envelope glycoproteins from all Lassa virus lineages, with the exception of the glycoprotein from the LP strain from lineage I, which was 100-fold less sensitive than that of other strains. This reduced sensitivity was mediated by a unique amino acid substitution, V434I, in the transmembrane domain of the envelope glycoprotein GP2 subunit. This position corresponds to the attenuation determinant of Candid#1, a live-attenuated Junín virus vaccine strain used to prevent Argentine hemorrhagic fever. Using a virus-yield reduction assay, we determined that LHF-535 potently inhibited Junín virus, but not Candid#1, and the Candid#1 attenuation determinant, F427I, regulated this difference in sensitivity. We also demonstrated that a daily oral dose of LHF-535 at 10 mg/kg protected mice from a lethal dose of Tacaribe virus. Serial passage of Tacaribe virus in LHF-535-treated Vero cells yielded viruses that were resistant to LHF-535, and the majority of drug-resistant viruses exhibited attenuated pathogenesis. These findings provide a framework for the clinical development of LHF-535 as a broad-spectrum inhibitor of arenavirus entry and provide an important context for monitoring the emergence of drug-resistant viruses.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C27H28N2O2
Molecular Weight
412.523427009583
Exact Mass
412.22
Elemental Analysis
C, 78.61; H, 6.84; N, 6.79; O, 7.76
CAS #
1450929-77-7
Related CAS #
(E)-LHF-535
PubChem CID
71711529
Appearance
Light yellow to yellow solid powder
LogP
5.8
tPSA
47.3Ų
SMILES
CC(O)(C1=CC=C(/C=C\C2=CC=C3N(C4=CC=C(OC(C)C)C=C4)C=NC3=C2)C=C1)C
InChi Key
DBNZTRPIBJSUIX-WAYWQWQTSA-N
InChi Code
InChI=1S/C27H28N2O2/c1-19(2)31-24-14-12-23(13-15-24)29-18-28-25-17-21(9-16-26(25)29)6-5-20-7-10-22(11-8-20)27(3,4)30/h5-19,30H,1-4H3/b6-5-
Chemical Name
(Z)-2-(4-(2-(1-(4-Isopropoxyphenyl)-1H-benzo[d]imidazol-5-yl)vinyl)phenyl)propan-2-ol
Synonyms
LHF535; LHF 535; LHF-535
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~150 mg/mL (~363.62 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.42 mg/mL (5.87 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 24.2 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.42 mg/mL (5.87 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 24.2 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4241 mL 12.1206 mL 24.2412 mL
5 mM 0.4848 mL 2.4241 mL 4.8482 mL
10 mM 0.2424 mL 1.2121 mL 2.4241 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Multiple Ascending Oral Dose 14-Day Trial of LHF-535 in Healthy Participants
CTID: NCT03993704
Phase: Phase 1
Status: Completed
Date: 2020-07-09
Biological Data
  • The Lassa virus LP strain contains two unique amino acid substitutions in the transmembrane domain of the GP2 subunit.[2].PLoS Pathog. 2018 Dec 21;14(12):e1007439.
  • LHF-535 protects AG129 mice against lethal Tacaribe virus challenge.[2].PLoS Pathog. 2018 Dec 21;14(12):e1007439.
  • LHF-535 is effective as a post-exposure therapeutic in mice.[2].PLoS Pathog. 2018 Dec 21;14(12):e1007439.
  • The LHF-535-resistant Tacaribe virus variant F425L is attenuated in AG129 mice and protects against subsequent challenge with the virulent wild-type virus.[2].PLoS Pathog. 2018 Dec 21;14(12):e1007439.
Contact Us