Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
Thyroid hormone receptors TRα and TRβ
|
---|---|
ln Vitro |
Hydrochloride of lithiothyronine (T3, 100 nM) promotes the growth of hepatoma cells overexpressing TRβ1 [1]. The human β1 thyroid hormone receptor (hTRβ1) is bound by lithyronine hydrochloride, which causes the receptor to change shape. Liothyronine hydrochloride has the ability to control metabolism, induce differentiation, and stimulate growth [2].
|
Enzyme Assay |
To understand the structural basis in the hormone-dependent transcriptional regulation of human beta 1 thyroid hormone receptor (h-TR beta 1), we studied the conformational changes of h-TR beta 1 induced by binding of 3,3',5-triiodo-L-thyronine (T3). h-TR beta 1 was treated with trypsin alone or in the presence of T3, thyroid hormone response element (TRE) or T3 together with TREs. Without T3, h-TR beta 1 was completely digested by trypsin. Binding of TREs had no effect on the tryptic digestion pattern. However, T3-bound h-TR beta 1 became resistant to tryptic digestion and yielded trypsin-resistant peptide fragments with molecular weight of 28,000 and 24,000. Chymotryptic digestion also yielded a T3-protected 24 Kd peptide fragment. Using anti-h-TR beta 1 antibodies and amino acid sequencing, the 28 Kd fragment was identified to be Ser202-Asp456. The 24 Kd tryptic fragments were found to be Lys239-Asp456 and Phe240-Asp456. The 24 Kd chymotryptic fragment was identified to be Lys235-Asp456. The structural changes as a result of T3 binding could serve as a transducing signal to modulate the gene regulating activity of h-TR beta 1[2].
|
Cell Assay |
To understand the role of thyroid hormone nuclear receptors (TRs) in hepatocarcinogenesis, we characterized the TRs in nine human hepatocarcinoma cell lines. The expression of TR proteins is receptor subtype- and cell type-dependent. TR alpha 1 protein expresses similarly at a low level in each of the nine cell lines. In contrast, TR beta 1 is overexpressed in hepatocarcinoma cells which are poorly differentiated. Furthermore, thyroid hormone was found to stimulate the proliferation of cells in which TR beta 1 is overexpressed. These results suggest that TR beta 1 is most likely involved in the differentiation and proliferation of hepatocarcinoma cells. Our studies have shed new light in the understanding of the role of TRs in liver carcinogenesis[1].
|
References |
|
Additional Infomation |
See also: Liothyronine (annotation moved to).
|
Molecular Formula |
C15H12NO4I3.HCL
|
---|---|
Molecular Weight |
687.43302
|
Exact Mass |
686.767
|
Elemental Analysis |
C, 26.21; H, 1.91; Cl, 5.16; I, 55.38; N, 2.04; O, 9.31
|
CAS # |
6138-47-2
|
Related CAS # |
Liothyronine sodium;55-06-1;Liothyronine;6893-02-3;Liothyronine sodium hydrate;345957-19-9
|
PubChem CID |
71283
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
5.46
|
Hydrogen Bond Donor Count |
4
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
24
|
Complexity |
402
|
Defined Atom Stereocenter Count |
1
|
SMILES |
C1=CC(=C(C=C1OC2=C(C=C(C=C2I)C[C@@H](C(=O)O)N)I)I)O.Cl
|
InChi Key |
HFEMPWKWYHWPQX-YDALLXLXSA-N
|
InChi Code |
InChI=1S/C15H12I3NO4.ClH/c16-9-6-8(1-2-13(9)20)23-14-10(17)3-7(4-11(14)18)5-12(19)15(21)22;/h1-4,6,12,20H,5,19H2,(H,21,22);1H/t12-;/m0./s1
|
Chemical Name |
(2S)-2-amino-3-[4-(4-hydroxy-3-iodophenoxy)-3,5-diiodophenyl]propanoic acid;hydrochloride
|
Synonyms |
Liothyronine hydrochloride; Liothyronine HCl; 6138-47-2; T66DHO0SET; Liothyronine (hydrochloride); O-(4-Hydroxy-3-iodophenyl)-3,5-diiodo-L-tyrosine hydrochloride; Lyothyronin; 6138-47-2 (HCl);
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.4547 mL | 7.2735 mL | 14.5469 mL | |
5 mM | 0.2909 mL | 1.4547 mL | 2.9094 mL | |
10 mM | 0.1455 mL | 0.7273 mL | 1.4547 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.