yingweiwo

Liothyronine sodium hydrate

Alias: 3,3',5-Triiodo-L-thyronine sodium salt hydrate; 3 3' 5-TRIIODO-L-THYRONINE SODIUM SALT&; sodium;(2S)-2-amino-3-[4-(4-hydroxy-3-iodophenoxy)-3,5-diiodophenyl]propanoate;hydrate; 3 3' 5-TRIIODO-L-THYRONINE SODIUM SALT&; SCHEMBL41655; MLS001333755; CHEMBL1356342; .
Cat No.:V44893 Purity: ≥98%
Liothyronine sodium hydrate is a potent thyroid hormone.
Liothyronine sodium hydrate
Liothyronine sodium hydrate Chemical Structure CAS No.: 345957-19-9
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Liothyronine sodium hydrate:

  • Liothyronine sodium
  • Liothyronine
  • Liothyronine HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Liothyronine sodium hydrate is a potent thyroid hormone. Liothyronine sodium hydrate is a potent TRα and TRβ agonist with Kis of 2.33 nM for both hTRα and hTRβ.
Biological Activity I Assay Protocols (From Reference)
Targets
Thyroid hormone receptors TRα and TRβ
ln Vitro
Liothyronine sodium hydrate interacts to the human thyroid hormone receptor (hTRβ1), causing conformational alterations. Liothyronine sodium hydrate is known to stimulate growth, induce differentiation, and control metabolism [2].
Enzyme Assay
To understand the structural basis in the hormone-dependent transcriptional regulation of human beta 1 thyroid hormone receptor (h-TR beta 1), we studied the conformational changes of h-TR beta 1 induced by binding of 3,3',5-triiodo-L-thyronine (T3). h-TR beta 1 was treated with trypsin alone or in the presence of T3, thyroid hormone response element (TRE) or T3 together with TREs. Without T3, h-TR beta 1 was completely digested by trypsin. Binding of TREs had no effect on the tryptic digestion pattern. However, T3-bound h-TR beta 1 became resistant to tryptic digestion and yielded trypsin-resistant peptide fragments with molecular weight of 28,000 and 24,000. Chymotryptic digestion also yielded a T3-protected 24 Kd peptide fragment. Using anti-h-TR beta 1 antibodies and amino acid sequencing, the 28 Kd fragment was identified to be Ser202-Asp456. The 24 Kd tryptic fragments were found to be Lys239-Asp456 and Phe240-Asp456. The 24 Kd chymotryptic fragment was identified to be Lys235-Asp456. The structural changes as a result of T3 binding could serve as a transducing signal to modulate the gene regulating activity of h-TR beta 1[2].
Cell Assay
To understand the role of thyroid hormone nuclear receptors (TRs) in hepatocarcinogenesis, we characterized the TRs in nine human hepatocarcinoma cell lines. The expression of TR proteins is receptor subtype- and cell type-dependent. TR alpha 1 protein expresses similarly at a low level in each of the nine cell lines. In contrast, TR beta 1 is overexpressed in hepatocarcinoma cells which are poorly differentiated. Furthermore, thyroid hormone was found to stimulate the proliferation of cells in which TR beta 1 is overexpressed. These results suggest that TR beta 1 is most likely involved in the differentiation and proliferation of hepatocarcinoma cells. Our studies have shed new light in the understanding of the role of TRs in liver carcinogenesis[1].
References

[1]. Stimulation of proliferation by 3,3',5-triiodo-L-thyronine in poorly differentiated human hepatocarcinoma cells overexpressing beta 1 thyroid hormone receptor. Cancer Lett. 1994 Oct 14;85(2):189-94.

[2]. Conformational changes of human beta 1 thyroid hormone receptor induced by binding of 3,3',5-triiodo-L-thyronine. Biochem Biophys Res Commun. 1993 Aug 31;195(1):385-92.

[3]. Discovery of novel indane derivatives as liver-selective thyroid hormone receptor β (TRβ) agonists for the treatment of dyslipidemia. Bioorg Med Chem. 2012 Jun 1;20(11):3622-34.

Additional Infomation
Liothyronine sodium is the sodium salt of liothyronine. Thought to be more active than levothyroxine and with a rapid (few hours) onset and short duration of action, liothyronine sodium is used in the treatment of hypothyroidism, particularly in cases of hypothyroid coma. It contains a 3,3',5-triiodo-L-thyroninate. Liothyronine Sodium is the sodium salt form of liothyronine, a synthetic form of the levorotatory isomer of the naturally occurring thyroid hormone triiodothyronine (T3). Liothyronine sodium binds to nuclear thyroid receptors which then bind to thyroid hormone response elements of target genes. As a result, liothyronine sodium induces gene expression that is required for normal growth and development. Liothyronine sodium is more potent and has a more rapid action than thyroxine (T4). A T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H11NO4I3-.NA+.H2O
Molecular Weight
690.96922
Exact Mass
690.783
CAS #
345957-19-9
Related CAS #
Liothyronine sodium;55-06-1;Liothyronine;6893-02-3;Liothyronine hydrochloride;6138-47-2
PubChem CID
23687509
Appearance
Typically exists as solid at room temperature
Melting Point
205ºC (dec.)(lit.)
LogP
5.026
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
5
Heavy Atom Count
25
Complexity
408
Defined Atom Stereocenter Count
1
SMILES
O.[Na+].O=C([C@H](CC1C=C(I)C(OC2C=CC(O)=C(I)C=2)=C(I)C=1)N)[O-]
InChi Key
IRGJMZGKFAPCCR-LTCKWSDVSA-M
InChi Code
InChI=1S/C15H12I3NO4.Na.H2O/c16-9-6-8(1-2-13(9)20)23-14-10(17)3-7(4-11(14)18)5-12(19)15(21)22;;/h1-4,6,12,20H,5,19H2,(H,21,22);;1H2/q;+1;/p-1/t12-;;/m0../s1
Chemical Name
sodium;(2S)-2-amino-3-[4-(4-hydroxy-3-iodophenoxy)-3,5-diiodophenyl]propanoate;hydrate
Synonyms
3,3',5-Triiodo-L-thyronine sodium salt hydrate; 3 3' 5-TRIIODO-L-THYRONINE SODIUM SALT&; sodium;(2S)-2-amino-3-[4-(4-hydroxy-3-iodophenoxy)-3,5-diiodophenyl]propanoate;hydrate; 3 3' 5-TRIIODO-L-THYRONINE SODIUM SALT&; SCHEMBL41655; MLS001333755; CHEMBL1356342; .
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.4472 mL 7.2362 mL 14.4724 mL
5 mM 0.2894 mL 1.4472 mL 2.8945 mL
10 mM 0.1447 mL 0.7236 mL 1.4472 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us