yingweiwo

L,L-Dityrosine (o,o'-Dityrosine)

Alias: o,o'-Dityrosine
Cat No.:V29827 Purity: ≥98%
L,L-Dityrosine(o,o'-Dityrosine),a tyrosine dimer formed by 3,3'-biaryl bond formation, isused as a biomarker to detect oxidative protein damage and selective proteolysis.
L,L-Dityrosine (o,o'-Dityrosine)
L,L-Dityrosine (o,o'-Dityrosine) Chemical Structure CAS No.: 63442-81-9
Product category: New12
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
Other Sizes

Other Forms of L,L-Dityrosine (o,o'-Dityrosine):

  • L,L-Dityrosine hydrochloride
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

L,L-Dityrosine (o,o'-Dityrosine), a tyrosine dimer formed by 3,3'-biaryl bond formation, is used as a biomarker to detect oxidative protein damage and selective proteolysis. It is a component of acid hydrolysates of a number of biological materials, including the insect cuticular resilin.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
The fluorescence of the rare amino acid LL-dityrosine, which is found in insoluble biological materials with structural features, was recently shown to decay non-exponentially (Kungl et al. (1992) J. Fluorescence 2, 63-74). Here we investigated the time-resolved fluorescence of a dityrosine-containing peptide (DCP) to study the influence of side chains on the fluorescence decay of the chromophore. The fluorescence decay of DCP was best fitted by three exponential terms including a sub-nanosecond rise term, the values of which are quite similar to the parameters obtained for the decay of free dityrosine. They were found to depend on the pH of the aqueous solution but not on the temperature. Analysis by an exponential series method revealed broad fluorescence lifetime distributions for DCP. Compared to the corresponding analysis of dityrosine transients, similar lifetime centers were found whereas the widths of the distributions were found broader for DCP. Molecular dyamics (MD) simulations of dityrosine at 300 K show that chi 1 and chi 2 side chain conformers (rotamers) of both tyrosine subunits interconvert on a picosecond timescale. The rates of interconversion were shown to depend critically upon the MD technique applied: in vacuo simulations yielded lower interconversion rates compared to stochastic dynamics (SD) and full MD (water explicitly included). However, MD simulations of the dityrosine-containing peptide revealed no interconversions of the chi 1 and chi 2 side chain rotamers of both tyrosine subunits within a 400 ps trajectory. Interconversions could be induced by raising the temperature of the system (DCP plus solvent) to 340 K. Side chain rotamers of dityrosine are not stable on a fluorescence time scale but are stable when a dityrosine-containing peptide is regarded. Nevertheless both molecules yield similar fluorescence decay patterns. We therefore conclude that the rotamer model proposed for the fluorescence decay of tyrosine and tryptophan cannot be applied to the fluorescence decay of dityrosine and peptides containing this chromophore. This should be of future interest when dityrosine is used as an intrinsic sensor to study complex dityrosine-containing macromolecules by fluorescence spectroscopy [1].
ln Vivo
Mice treated with MPTP have increased levels of L,L-dityrosine (o,o'-dityrosine) in the ventral mid brain striatum [2].
Animal Protocol
Oxidative stress is implicated in the death of dopaminergic neurons in Parkinson's disease and in the 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) model of Parkinson's disease. Oxidative species that might mediate this damage include hydroxyl radical, tyrosyl radical, or reactive nitrogen species such as peroxynitrite. In mice, we showed that MPTP markedly increased levels of o, o'-dityrosine and 3-nitrotyrosine in the striatum and midbrain but not in brain regions resistant to MPTP. These two stable compounds indicate that tyrosyl radical and reactive nitrogen species have attacked tyrosine residues. In contrast, MPTP failed to alter levels of ortho-tyrosine in any brain region we studied. This marker accumulates when hydroxyl radical oxidizes protein-bound phenylalanine residues. We also showed that treating whole-brain proteins with hydroxyl radical markedly increased levels of ortho-tyrosine in vitro. Under identical conditions, tyrosyl radical, produced by the heme protein myeloperoxidase, selectively increased levels of o,o'-dityrosine, whereas peroxynitrite increased levels of 3-nitrotyrosine and, to a lesser extent, of ortho-tyrosine. These in vivo and in vitro findings implicate reactive nitrogen species and tyrosyl radical in MPTP neurotoxicity but argue against a deleterious role for hydroxyl radical in this model. They also show that reactive nitrogen species and tyrosyl radical (and consequently protein oxidation) represent an early and previously unidentified biochemical event in MPTP-induced brain injury. This finding may be significant for understanding the pathogenesis of Parkinson's disease and developing neuroprotective therapies [2].
References
[1]. Kungl AJ, et al. Molecular dynamics simulation of the rare amino acid LL-dityrosine and a dityrosine-containing peptide: comparison with time-resolved fluorescence. Biochim Biophys Acta. 1994 Dec 15;1201(3):345-52.
[2]. S Pennathur, et al. Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o,o'-dityrosine in brain tissue of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson's disease. J Biol Chem. 1999 Dec 3;274(49):34621-8.
Additional Infomation
LL-dityrosine is a dityrosine. It is an enantiomer of a DD-dityrosine.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C18H20N2O6
Molecular Weight
360.36
Exact Mass
360.132
CAS #
63442-81-9
Related CAS #
L,L-Dityrosine hydrochloride;221308-01-6
PubChem CID
14554235
Appearance
White to off-white solid
Density
1.5±0.1 g/cm3
Boiling Point
622.9±55.0 °C at 760 mmHg
Flash Point
330.5±31.5 °C
Vapour Pressure
0.0±1.9 mmHg at 25°C
Index of Refraction
1.676
LogP
-0.31
Hydrogen Bond Donor Count
6
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
7
Heavy Atom Count
26
Complexity
458
Defined Atom Stereocenter Count
2
SMILES
O([H])C1C([H])=C([H])C(=C([H])C=1C1=C(C([H])=C([H])C(=C1[H])C([H])([H])C([H])(C(=O)O[H])N([H])[H])O[H])C([H])([H])C([H])(C(=O)O[H])N([H])[H]
InChi Key
OQALFHMKVSJFRR-KBPBESRZSA-N
InChi Code
InChI=1S/C18H20N2O6/c19-13(17(23)24)7-9-1-3-15(21)11(5-9)12-6-10(2-4-16(12)22)8-14(20)18(25)26/h1-6,13-14,21-22H,7-8,19-20H2,(H,23,24)(H,25,26)/t13-,14-/m0/s1
Chemical Name
(2S)-2-amino-3-[3-[5-[(2S)-2-amino-2-carboxyethyl]-2-hydroxyphenyl]-4-hydroxyphenyl]propanoic acid
Synonyms
o,o'-Dityrosine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~5.56 mg/mL (~15.43 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.7750 mL 13.8750 mL 27.7500 mL
5 mM 0.5550 mL 2.7750 mL 5.5500 mL
10 mM 0.2775 mL 1.3875 mL 2.7750 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us