yingweiwo

Lonafarnib

Alias: Lonafarnib; SCH66336; Sarasar; Sch 66336; Sch66336; Sch-66336; Zokinvy; lonafarnibum; Trade name: Sarasar; SCH 66336; SCH-66336;
Cat No.:V0916 Purity: ≥98%
Lonafarnib (formerly SCH66336; SCH-66336; Sarasar; Zokinvy),a tricyclic derivative of carboxamide, is a novel, orally bioavailable and highly potent FPTase (farnesyl protein transferase) inhibitor with potential anticancer activity.
Lonafarnib
Lonafarnib Chemical Structure CAS No.: 193275-84-2
Product category: Transferase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
2mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of Lonafarnib:

  • (Rac)-Lonafarnib (Sch-66336 racemate)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description

Lonafarnib (formerly SCH66336; SCH-66336; Sarasar; Zokinvy), a tricyclic derivative of carboxamide, is a novel, orally bioavailable and highly potent FPTase (farnesyl protein transferase) inhibitor with potential anticancer activity. It inhibits H-ras, K-ras-4B and N-ras with IC50 of 1.9 nM, 5.2 nM and 2.8 nM in cell-free assays, respectively. Lonafarnib has been approved in 2020 to reduce the risk of death due to Hutchinson-Gilford progeria syndrome and for the treatment of certain processing-deficient progeroid laminopathies. It acts by binding to and inhibiting farnesyl transferase enzyme, which is involved in the post-translational modification and activation of Ras proteins. Ras proteins participate in numerous signalling pathways (proliferation, cytoskeletal organization), and play an important role in oncogenesis. Mutated ras proteins have been found in a wide range of human cancers.

Biological Activity I Assay Protocols (From Reference)
Targets
H-ras (IC50 = 1.9 nM); K-ras (IC50 = 5.2 nM); N-ras (IC50 = 2.8 nM)[1]
ln Vitro
Lonafarnib (Sch66336) suppresses the transformed growth properties of human tumor cell lines carrying activated Ki-Ras proteins and potently inhibits Ha-Ras processing in whole cells[1]. When compared to the control treatment, all treatment groups that contained Lonafarnib (10 μM) had a noticeably greater amount of unfarnesylated H-Ras (116–137%)[2].
ln Vivo
Lonafarnib (Sch66336) exhibits good oral bioavailability and pharmacokinetic characteristics in the mouse, rat, and monkey systems. Lonafarnib exhibits strong oral efficacy in a variety of human tumor xenograft models in the nude mouse, including tumors originating from the colon, lung, pancreatic, prostate, and urinary bladder[1]. In comparison to vehicle-treated control mice (T/C of 0.67), lionafarnib alone (80 mg/kg by oral gavage, once day) had a limited capacity to suppress orthotopic U87 tumors. The intended outcome of XRT/Tem (2.5 Gy/day for 2 days; 5 mg/kg by oral gavage 90 min before XRT) is a moderate in vivo suppression of tumor growth (T/C of 0.42). The strongest growth reduction (T/C of 0.02) and significant superiority over XRT/Tem (p<0.04) is achieved by concurrent administration of Lonafarnib/XRT/Tem (Lonafarnib 80 mg/kg by oral gavage, once daily, XRT 2.5 Gy/day for 2 days, and Tem 5 mg/kg by oral gavage 90 minutes prior to XRT). Most animals show a decrease in tumor volume (p<0.05) after 2 weeks and the effect persists after 4 weeks (p<0.05)[2].
Enzyme Assay
SCH 66336 potently inhibits Ha-Ras processing in whole cells and blocks the transformed growth properties of fibroblasts and human tumor cell lines expressing activated Ki-Ras proteins. The anchorage-independent growth of many human tumor lines that lack an activated ras oncogene is also blocked by treatment with SCH 66336.
FPTactivity is determined by measuring the transfer of [3H]farnesyl from [3H]farnesyl PPi to trichloroacetic acid-precipitable Ha-Ras-CVLS. GGPT-1 activity is similarly determined using [3H]geranylgeranyl diphosphate and Ha-Ras-CVLL as substrates[1].
Cell Assay
Non-Radioactive MTS Cytotoxicty Assay[2]
Assays were performed under manufacturer’s instructions with 5000 cells/well in a 96-well tissue culture plate. Plates were irradiated 24 h after drug exposure and assayed 96 h after XRT, with fresh drug treatments applied each day. For quantification, dye was added directly to each well, plates were washed as per the manufactures recommendation and cell viability determined by optical density. Significance was analyzed using the Student’s T-test.
Proliferation Assay[2]
12-well plates were seeded with 100,000 cells/well. Drug treatments were initiated 24 h after plating, and media was replaced every 24 h for a total of 96 h of drug exposure. Plates were irradiated after 24 h of drug exposure. Cells from triplicate sets of treatments were trypsonized and counted 48 h after irradation using a Z1 series coulter counter, and compared to cell numbers from wells counted on Day 1 (the day drug treatment was initiated). Proliferation after drug treatments were normalized to the control wells and expressed as % of the control treatment. Significance was analyzed using the Student’s T-test.
Downstream Pathway Analysis[2]
2.5 ×106 cells per 100mm3 dish were seeded, and drug treatments initiated 24 h after plating. Plates were irradiated after 24 h of drug exposure, and cells were lysed after 48 h of drug exposure (24 h after XRT). Total protein was extracted with ice-cold T-Per supplemented with protease and phosphatase inhibitors, and quantitated using the BCA protein assay kit. 500ug of total protein was used to probe different Human Phospho-RTK Human Phospho-MAPK Arrays. Arrays were washed and developed according to manufacturer’s instructions, and exposed to film. Films were scanned using a flatbed scanner, and dots were quantitated using ImageJ. Relative changes between treatment groups were expressed as % of control, with significance assessed by Student’s T-test.
Western Blotting of H-Ras[2]
2.5 ×106 cells per 100mm3 dish were seeded, and drug treatments initiated 24 h after plating. Plates were irradiated after 24 h of drug exposure, and cells were lysed after 48 h of drug exposure (24 h after XRT). Total protein was extracted with ice-cold T-Per supplemented with protease and phosphatase inhibitors, and quantitated using the BCA protein assay kit. Samples (20 µg total protein) were run on 4–15% Tris HCl SDS-PAGE Criterion gels (Biorad, Hercules, CA) and probed for H-Ras and α-tubulin as an internal loading control. Blots were exposed to film, and films were scanned using a flat bed scanner. Bands were quantitated using ImageJ (NIH, Bethesda, MD), and graphed using Excel. H-Ras was normalized to the loading control and expressed as a % of the control treatment. Significance was assessed using the Student’s T-test.
Animal Protocol
Formulation: lonafarnib (SCH66336, Sarasar®) and Temozolomide were reconstituted in 4% DMSO in 20% (2-hydroxypropyl)-beta-cyclodextrin in PBS. Lonafarnib was given once daily at 80mg/kg with twice weekly weightings to ensure accurate dosing.
Tumor Cell Line Xenografts[2]
Tumor cell lines were harvested in mid-logarithmic growth phase and resuspended in PBS. Homozygous NCR nude mice were anesthetized with Ketamine/Xylazine before exposure of the cranium and removal of the periosteum with a size 34 inverted cone burr. Mice were fixed in a stereotactic frame, and 5×104 cells in 10 ul of PBS were injected through a 27-gauge needle over 5 min at 2 mm lateral and posterior to the bregma and 3 mm below the dura. The incision was closed with staples. Animals were observed daily for signs of distress or development of neurologic symptoms at which time the mice were sacrificed.
In Vivo Imaging[2]
Mice were anesthetized with Ketamine/Xylazine, injected with D-luciferin at 50 mg/kg i.p., and imaged with the Xenogen IVIS 100 Imaging System for 10–120 s, bin size 2 as previously published. To quantify bioluminescence, identical circular regions of interest were drawn to encircle the entire head of each animal, and the integrated flux of photons (photons per second) within each region of interest was determined by using the Xenogen LIVING IMAGES software package. Data were normalized to bioluminescence at the initiation of treatment for each animal. Statistical significance was assessed using the Student’s T-test.
Glioma Neurosphere Assay[2]
Collection and use of fresh and discarded human tumor tissue was approved by the Brigham and Women’s Hospital Institutional Review Board. After frozen section diagnosis of malignant glioma by the attending neuropathologist, tumor material was grossly dissected from the tissue sample. Portions of the tumors were collected in chilled media for the studies described here and other portions were allocated for paraffin embedding for histological diagnosis and for genotyping. Expansion of tumor material and propagation was accomplished by subcutaneous implantation in Icr SCID mice (cells were never grown on plastic). When tumors reached ~1 cm, tumors were disaggregated, cells were counted and then grown in serum-free media with EGF, FGF and LIF as described previously to form tumorspheres [25, 26]. Drugs (SCH 5uM, TMZ 100uM) were added immediately after plating cells into 24 well plates and radiation given at 24hrs after plating and tumor neurospheres were counted in triplicate 10 days after plating.
Dissolved in 20% (w/v) HPβCD; 50 mg/kg; Oral gavage
NOD/SCID mice between 6–12 weeks of age
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
The absolute oral bioavailability of lonafarnib is unknown; in healthy subjects administration of either 75 or 100 mg of lonafarnib twice daily resulted in mean peak plasma concentrations (%CV) of 834 (32%) and 964 (32%) ng/mL, respectively. Twice daily administration of 115 mg/m2 lonafarnib in HGPS patients resulted in a median tmax of 2 hours (range 0-6), mean Cmax of 1777 ± 1083 ng/mL, mean AUC0-8hr of 9869 ± 6327 ng\*hr/mL, and a mean AUCtau of 12365 ± 9135 ng\*hr/mL. The corresponding values for a dose of 150 mg/m2 are: 4 hours (range 0-12), 2695 ± 1090 ng/mL, 16020 ± 4978 ng\*hr/mL, and 19539 ± 6434 ng\*hr/mL, respectively. Following a single oral dose of 75 mg in healthy subjects, the Cmax of lonafarnib decreased by 55% and 25%, and the AUC decreased by 29% and 21% for a high/low-fat meal compared to fasted conditions.
Up to 240 hours following oral administration of 104 mg [14C]-lonafarnib in fasted healthy subjects, approximately 62% and <1% of the initial radiolabeled dose was recovered in feces and urine, respectively. The two most prevalent metabolites were the active HM21 and HM17, which account for 14% and 15% of plasma radioactivity.
In healthy patients administered either 75 or 100 mg lonafarnib twice daily, the steady-state apparent volumes of distribution were 97.4 L and 87.8 L, respectively.
Metabolism / Metabolites
Lonafarnib is metabolized _in vitro_ primarily by CYP3A4/5 and partially by CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, and CYP2E1. Formation of the primary metabolites involves oxidation and subsequent dehydration in the pendant piperidine ring.
Biological Half-Life
Lonafarnib has a mean half-life of approximately 4-6 hours following oral administration of 100 mg twice daily in healthy subjects.
Toxicity/Toxicokinetics
Hepatotoxicity
In the small prelicensure clinical trials conducted in children with progeria, serum aminotransferase elevations occurred in 35% of lonafarnib treated subjects but were usually mild and self-limited, rising to above 3 times the upper limit of normal (ULN) in only 5%. There were no liver related serious adverse events and no patient had a concurrent elevation in serum aminotransferase and bilirubin levels. Since approval of lonafarnib, there have been no published reports of drug induced liver injury associated with its use, although clinical experience with the drug, particularly with long term therapy, has been limited.
Likelihood score: E* (unproven but suspected rare cause of clinically apparent liver injury).
Protein Binding
Lonafarnib exhibits _in vitro_ plasma protein binding of ≥99% over a concentration range of 0.5-40.0 μg/mL.
References

[1]. Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res. 1998 Nov 1;58(21):4947-56.

[2]. Lonafarnib (SCH66336) improves the activity of temozolomide and radiation for orthotopic malignant gliomas. J Neurooncol. 2011 Aug;104(1):179-89.

[3]. Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection: a proof-of-concept randomised, double-blind, placebo-controlled phase 2A trial. Lancet Infect Dis. 2015 Oct;15(10):1167-1174.

Additional Infomation
Pharmacodynamics
Lonafarnib is a direct farnesyl transferase inhibitor that reduces the farnesylation of numerous cellular proteins, including progerin, the aberrantly truncated form of lamin A that accumulates in progeroid laminopathies such as Hutchinson-Gilford progeria syndrome. Treatment with lonafarnib has been associated with electrolyte abnormalities, myelosuppression, and increased liver enzyme levels (AST/ALT), although causation remains unclear. Also, lonafarnib is known to cause nephrotoxicity in rats and rod-dependent low-light vision decline in monkeys at plasma levels similar to those achieved under recommended dosing guidelines in humans; patients taking lonafarnib should undergo regular monitoring for both renal and ophthalmological function. In addition, based on observations from animal studies with rats, monkeys, and rabbits with plasma drug concentrations approximately equal to those attained in humans, lonafarnib may cause both male and female fertility impairment and embryo-fetal toxicity.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C27H31BR2CLN4O2
Molecular Weight
638.82
Exact Mass
636.05
Elemental Analysis
C, 50.76; H, 4.89; Br, 25.02; Cl, 5.55; N, 8.77; O, 5.01
CAS #
193275-84-2
Related CAS #
(Rac)-Lonafarnib;193275-86-4
PubChem CID
148195
Appearance
White to off-white solid powder
Density
1.5±0.1 g/cm3
Boiling Point
710.4±70.0 °C at 760 mmHg
Melting Point
214.5-215.9° (monohydrate); mp 222-223°
Flash Point
383.5±35.7 °C
Vapour Pressure
0.0±2.3 mmHg at 25°C
Index of Refraction
1.630
LogP
5.03
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
3
Heavy Atom Count
36
Complexity
790
Defined Atom Stereocenter Count
1
SMILES
C1CN(CCC1CC(=O)N2CCC(CC2)[C@@H]3C4=C(CCC5=C3N=CC(=C5)Br)C=C(C=C4Br)Cl)C(=O)N
InChi Key
DHMTURDWPRKSOA-RUZDIDTESA-N
InChi Code
InChI=1S/C27H31Br2ClN4O2/c28-20-12-19-2-1-18-13-21(30)14-22(29)24(18)25(26(19)32-15-20)17-5-9-33(10-6-17)23(35)11-16-3-7-34(8-4-16)27(31)36/h12-17,25H,1-11H2,(H2,31,36)/t25-/m1/s1
Chemical Name
4-[2-[4-[(2R)-6,15-dibromo-13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,12,14-hexaen-2-yl]piperidin-1-yl]-2-oxoethyl]piperidine-1-carboxamide
Synonyms
Lonafarnib; SCH66336; Sarasar; Sch 66336; Sch66336; Sch-66336; Zokinvy; lonafarnibum; Trade name: Sarasar; SCH 66336; SCH-66336;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 127 mg/mL (198.8 mM)
Water:<1 mg/mL
Ethanol: 127 mg/mL (198.8 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (3.91 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (3.91 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (3.91 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.5654 mL 7.8269 mL 15.6539 mL
5 mM 0.3131 mL 1.5654 mL 3.1308 mL
10 mM 0.1565 mL 0.7827 mL 1.5654 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02527707 Completed Has Results Drug: lonafarnib
Drug: Ritonavir
Chronic Delta Hepatitis Eiger BioPharmaceuticals September 2015 Phase 2
NCT02579044 Enrolling by invitation Drug: Everolimus and lonafarnib Progeria Boston Children's Hospital December 2015 Phase 1
Phase 2
NCT05229991 Active, not recruiting Drug: Lonafarnib
Drug: Ritonavir
Hepatitis D, Chronic Soroka University Medical Center May 15, 2021 Phase 3
NCT00773474 Terminated Has Results Drug: Lonafarnib Metastatic Breast Cancer George Sledge October 2008 Phase 2
Biological Data
  • Lonafarnib

    Effects of SCH66336 on the cell growth and colony formation in SqCC/Y1 cells.Cancer Res.2003 Aug 15;63(16):4796-800.
  • Lonafarnib

    Effects of SCH66336 on apoptosis induction in SqCC/Y1 cells.Cancer Res.2003 Aug 15;63(16):4796-800.
  • Lonafarnib

    Phosphorylation level and protein expression changes by SCH66336 in SqCC/Y1 cells.Cancer Res.2003 Aug 15;63(16):4796-800.
Contact Us