yingweiwo

Loxistatin Acid (E-64C; NSC694279; EP475)

Alias: NSC-694279; EP-475; E64-C; NSC 694279; EP 475; E64 C; NSC694279; EP475;E64C; Loxistatin Acid
Cat No.:V0700 Purity: ≥98%
Loxistatin Acid (formerly also known as E-64C; NSC-694279; EP-475), an analog of E-64, is a novel, potent, irreversible and membrane-permeable cysteine protease inhibitor with important biological activity.
Loxistatin Acid (E-64C; NSC694279; EP475)
Loxistatin Acid (E-64C; NSC694279; EP475) Chemical Structure CAS No.: 76684-89-4
Product category: Cysteine Protease
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Loxistatin Acid (formerly also known as E-64C; NSC-694279; EP-475), an analog of E-64, is a novel, potent, irreversible and membrane-permeable cysteine protease inhibitor with important biological activity. Using cathepsins B and L, it has been shown that E-64-c is significantly more reactive than E-64. To measure the rate constants of inhibition of E-64-c, human liver cathepsins B and H and rat cathepsin L were utilized. The results showed that the rate constants of inactivation of cathepsins B, H, and L were, respectively, 298000, 2018, and 206000 M-1 s-1.

Biological Activity I Assay Protocols (From Reference)
Targets
Cysteine proteases; CANP; Cathepsin C
ln Vitro
Loxistatin Acid (E-64C) normalizes the increased activities of cathepsin B and cathepsin H in the pectoral muscle of dystrophic chickens.[2] After the middle cerebral artery in rats is blocked, E-64C prevents the ischemic degradation of cerebral proteins.[3]
ln Vivo
Loxistatin Acid (E-64C), as a thiol protease inhibitor, inhibits calpain activity in intact platelets.[1] E-64C shows promise as a treatment for Alzheimer's disease because it reduces the production of Aβ and inhibits β-secretase activity in the regulated secretory vesicles of neuronal chromaffin cells.[4]
Animal Protocol
Dogs: Research is conducted on 83 mongrel dogs weighing an average of 11.2 kg. Through intravenous sodium thiamylal (7 mg/kg), they are rendered unconscious. Group A (n = 17) receives an intravenous bolus of E-64c (100 mg/kg) dissolved in saturated sodium bicarbonate just prior to the occlusion and following reperfusion, while Group B (n = 17) only receives the vehicle solution during these periods. The LAD is permanently ligated at the same level in the 49 dogs that remain (Groups C and D). An intravenous bolus of either vehicle only (Group D; n = 25) or loxstatin acid (100 mg/kg) is administered just prior to and one hour following the ligation. The estimated intramyocardial Loxistatin acid molecular concentration is 1,000 times that of total mCANP, and the dose of E-64c is intended for potential use in clinical practice.
References

[1]. Biochem Biophys Res Commun . 1989 Jan 31;158(2):432-5.

[2]. J Biochem . 1981 Sep;90(3):893-6.

[3]. Brain Res . 1990 Aug 27;526(1):177-9.

[4]. J Neurosci Res . 2003 Nov 1;74(3):393-405.

Additional Infomation
E-64c is a leucine derivative.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H26N2O5
Molecular Weight
314.38
Exact Mass
314.184
Elemental Analysis
C, 57.31; H, 8.34; N, 8.91; O, 25.45
CAS #
76684-89-4
Related CAS #
76684-89-4
PubChem CID
123664
Appearance
White to off-white solid powder
Density
1.2±0.1 g/cm3
Boiling Point
596.4±50.0 °C at 760 mmHg
Flash Point
314.5±30.1 °C
Vapour Pressure
0.0±3.6 mmHg at 25°C
Index of Refraction
1.504
LogP
1.36
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
9
Heavy Atom Count
22
Complexity
422
Defined Atom Stereocenter Count
3
SMILES
O=C([C@H]1O[C@@H]1C(N[C@H](C(NCCC(C)C)=O)CC(C)C)=O)O
InChi Key
SCMSYZJDIQPSDI-SRVKXCTJSA-N
InChi Code
InChI=1S/C15H26N2O5/c1-8(2)5-6-16-13(18)10(7-9(3)4)17-14(19)11-12(22-11)15(20)21/h8-12H,5-7H2,1-4H3,(H,16,18)(H,17,19)(H,20,21)/t10-,11-,12-/m0/s1
Chemical Name
(2S,3S)-3-[[(2S)-4-methyl-1-(3-methylbutylamino)-1-oxopentan-2-yl]carbamoyl]oxirane-2-carboxylic acid
Synonyms
NSC-694279; EP-475; E64-C; NSC 694279; EP 475; E64 C; NSC694279; EP475;E64C; Loxistatin Acid
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~62 mg/mL (~197.2 mM)
Water: ~2 mg/mL (~6.4 mM)
Ethanol: ~62 mg/mL (~197.2 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (6.62 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (6.62 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (6.62 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: Saline: 2mg/mL

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.1809 mL 15.9043 mL 31.8086 mL
5 mM 0.6362 mL 3.1809 mL 6.3617 mL
10 mM 0.3181 mL 1.5904 mL 3.1809 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us