Size | Price | Stock | Qty |
---|---|---|---|
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
Purity: ≥98%
Magnolol (also called Dehydrodichavicol and 5,5'-Diallyl-2,2'-biphenyldiol) is a novel, naturally occuring and bioactive lignin isolated from the bark of the Houpu magnolia (Magnolia officinalis) which shows antifungal properties. Magnolol is an isomer of honokiol (also known as sc-202653). Magnolol is an anxiolytic, anti-thrombotic and antibacterial. Also it is an inhibitor of nitric oxide (NO) and TNF-α production in LPS-activated macrophages by the suppression of inducible nitric oxide synthase(iNOS; NOS II) expression (IC50 = 16.8 μM). Magnolol is an activator of CB2 and CB1.
ln Vitro |
Magnolol has EC50 values of 10.4 μM and 17.7 μM for RXRα and PPARγ, respectively, making it a dual coagulant. Magnolol (26.2 - 80 μM) has a dose-dependent binding behavior towards RXRαLBD and PPARγLBD, with Kd values of 45.7 μM and 1.67 μM, correspondingly. (1–20 μM) has no effect in modulating RXRE, but it causes PPRE to change in a dispensing manner [1]. In the presence of insulin, adipocyte secretion from 3T3-L1 preadipocytes and C3H10T1/2 pluripotent stem cells is enhanced by magnoliol (1, 3, 10 μM). Adipocyte secretory marker gene mRNA expression is increased by 10 μM of magnolil. In secretory 3T3-L1 adipocytes, magnoliol (1, 10 μM) increases both baseline and insulin-stimulated adipocyte secretion [2].
|
---|---|
ln Vivo |
The severity of glucose fermentation sodium sulfate (DSS)-induced hot water sodium form in mice is markedly lessened by magnoliol (5–15 mg/kg, po). In mice exposed with DSS, magnoliol (10, 15 mg/kg, unintentional) inhibits myeloperoxidase activity and degenerative alterations in the underlying tissue. It also lowers the high levels of pro-inflammatory cytokines TNF-α, IL-1β, and IL-induced by DSS in the underlying tissue. 6. Renal color pathway anomalies can also be reversed and regulated by magnolizol (10 mg/kg, po) [3].
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
To investigate the relationship between magnolol and the clinical effects of Saiboku-To, urinary magnolol excretion was compared in responders and non-responders under long-term Saiboku-To treatment. The clinical outcome of the Saiboku-To treatment was evaluated in nine asthmatic patients at 52 weeks after the onset of the treatment, using individual fluctuation of asthmatic points obtained from the patients' diary cards. Three patients whose clinical conditions were improved by the treatment were termed responders and six others were termed non-responders. The difference in the amounts of the total magnolol excreted were not significant; however, free (or non-conjugated) amounts of magnolol excreted in the responders were 7 times those in the non-responders (P < 0.05). These results suggest that the magnolol might be responsible for the therapeutic effect of Saiboku-To, indicating practical bioavailability in the responders. Metabolism / Metabolites Magnolol has known human metabolites that include (2S,3S,4S,5R)-3,4,5-trihydroxy-6-[2-(2-hydroxy-5-prop-2-enylphenyl)-4-prop-2-enylphenoxy]oxane-2-carboxylic acid. |
Toxicity/Toxicokinetics |
Interactions
Three neolignans, known as magnolol, honokiol and the new monoterpenylmagnolol, were isolated from the bark of Magnolia officinalis ... . The MeOH extract of this plant and magnolol exhibited remarkable inhibitory effects on mouse skin tumor promotion in an in vivo two stage carcinogenesis test... Magnolol has been reported to strongly inhibit the mutagenicity induced by indirect mutagens in the Ames test as well as the clastogenicity induced by benzo(a)pyrene (B(a)P) in the mice micronucleus test. Here, ... the inhibitory effect of magnolol on the DNA damage induced by 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) /was evaluated/ in various organs using the mice alkaline single cell gel electrophoresis (SCG) assay. Animals were treated with a single oral administration of magnolol (0.01, 0.1, 1, 10, and 100 mg/kg), followed by a single intraperitoneal injection of Trp-P-2 (10 mg/kg). The liver, lung, and kidney were removed at 3 hr after treatment and used in SCG assay. The results indicated that magnolol inhibited Trp-P-2-induced DNA damage in various organs. To elucidate the mechanism of this inhibitory effect against Trp-P-2, we investigated the inhibitory effect of magnolol on in vivo CYP1A2 activity using the zoxazolamine paralysis test. Magnolol significantly prolonged zoxazolamine paralysis time and showed an inhibitory effect on in vivo CYP1A2 activity. These results indicate that magnolol has an inhibitory effect on the DNA damage induced by Trp-P-2 in various organs in vivo. This inhibitory mechanism is considered due to in vivo CYP1A2 inhibition. ... The in vivo anti-clastogenic effect of magnolol against clastogenicity induced by B(a)P was evaluated using the micronucleus test in mice. Animals were treated with an oral administration of magnolol (1, 10, and 100 mg/kg) at -24, 0, 24, 48, 72, and 96 hr before a single intraperitoneal injection of B(a)P. Peripheral blood specimens were prepared 48 h after administration of B(a)P, and analyzed by the acridine orange (AO) technique. The results indicated that magnolol inhibited clastogenicity induced by B(a)P at various administration times. In order to elucidate the mechanism behind this effect, we measured the activity of the detoxifying enzymes [UDP-glucuronosyltransferase (UGT) and glutathione-S-transferase (GST)] and antioxidative enzymes [superoxide dismutase (SOD) and catalase] in the liver when treated with an oral administration of magnolol at various administration times. Its effect on clastogenicity created by exposure to oxidative DNA damage-inducing X-ray irradiation was also evaluated using the micronucleus test in mice. Results showed that magnolol increased the activity of both UGT and SOD enzymes, and also inhibited the clastogenicity induced by X-ray irradiation. Magnolol had an anti-clastogenic effect on B(a)P in the micronucleus test as well as an anti-mutagenic effect on indirect mutagens in the Ames test. The anti-clastogenic effect of magnolol was also suggested by the increases in UGT and SOD enzyme activity, and by the attenuation of oxidative damage induced by X-ray irradiation. ... Anti-mutagenic activity of magnolol against mutagenicity induced by direct mutagens [1-nitropyrene (1-NP), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG)] and indirect mutagens [2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-aminodipyrido[1,2-a:3',2'-d]imidazole (Glu-P-2), benzo(a)pyrene (B(a)P), 2-aminoanthracene (2-AA) and 7,12-dimethylbenz[a]anthracene (DMBA)] were investigated using the bacterial mutagenicity test (Ames test). Results show that magnolol strongly inhibits mutagenicity induced by indirect mutagens, but does not affect direct mutagens. To elucidate the mechanism of this effect against indirect mutagens, effect of magnolol on CYP1A1- and CYP1A2-related enzyme activities of ethoxyresorufin-O-deethylase (EROD) and methoxyresorufin-O-demethylase (MROD) were investigated. Magnolol strongly and competitively suppressed these enzyme activities, suggesting it inhibited mutation induced by indirect mutagens through suppression of CYP1A1 and CYP1A2 activity. A23187-induced pleurisy in mice was used to investigate the anti-inflammatory effect of magnolol, a phenolic compound isolated from Chinese medicine Hou p'u (cortex of Magnolia officinalis). A23187-induced protein leakage was reduced by magnolol (10 mg/kg, ip), indomethacin (10 mg/kg, ip) and BW755C (30 mg/kg, ip). A23187-induced polymorphonuclear (PMN) leukocyte infiltration in the pleural cavity was suppressed by magnolol and BW755C, while enhanced by indomethacin. Like BW755C, magnolol reduced both prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) levels in the pleural fluid of A23187-induced pleurisy, while indomethacin reduced PGE2 but increased LTB4 formation. In the rat isolated peripheral neutrophil suspension, magnolol (3.7 uM) and BW755C (10 microM) also suppressed the A23187-induced thromboxane B2 (TXB2) and LTB4 formation. These results suggest that magnolol, like BW755C, might be a dual cyclo-oxygenase and lipoxygenase inhibitor. The inhibitory effect of magnolol on the A23187-induced pleurisy is proposed to be, at least partly, dependent on the reduction of the formation of eicosanoids mediators in the inflammatory site. Non-Human Toxicity Values LD50 Mouse oral 2200 mg/kg /from table/ |
References | |
Additional Infomation |
Magnolol is a member of biphenyls.
Magnolol has been reported in Magnolia henryi, Magnolia officinalis, and other organisms with data available. See also: Magnolol; rhynchophylline (component of). Mechanism of Action The effects of honokiol and magnolol, two major bioactive constituents of the bark of Magnolia officinalis, on Ca(2+) and Na(+) influx induced by various stimulants were investigated in cultured rat cerebellar granule cells by single-cell fura-2 or SBFI microfluorimetry. Honokiol and magnolol blocked the glutamate- and KCl-evoked Ca(2+) influx with similar potency and efficacy, but did not affect KCl-evoked Na(+) influx. However, honokiol was more specific for blocking NMDA-induced Ca(2+) influx, whereas magnolol influenced with both NMDA- and non-NMDA activated Ca(2+) and Na(+) influx. Moreover, the anti-convulsant effects of these two compounds on NMDA-induced seizures were also evaluated. After honokiol or magnolol (1 and 5 mg/kg, ip) pretreatment, the seizure thresholds of NMRI mice were determined by tail-vein infusion of NMDA (10 mg/mL). Data showed that both honokiol and magnolol significantly increased the NMDA-induced seizure thresholds, and honokiol was more potent than magnolol. These results demonstrated that magnolol and honokiol have differential effects on NMDA and non-NMDA receptors, suggesting that the distinct therapeutic applications of these two compounds for neuroprotection should be considered. Magnolol inhibited phorbol 12-myristate 13-acetate (PMA)-activated rat neutrophil aggregation in a concentration-dependent manner with an IC50 (concentration resulting in 50% inhibition) of 24.2 +/- 1.7 uM. Magnolol suppressed the enzyme activity of neutrophil cytosolic and rat brain protein kinase C (PKC) over the same range of concentrations at which it inhibited the aggregation. Magnolol did not affect PMA-induced cytosolic PKC-alpha and -delta membrane translocation or trypsin-treated rat-brain PKC activity, but attenuated [3H]phorbol 12,13-dibutyrate binding to neutrophil cytosolic PKC. These results suggest that the inhibition of PMA-induced rat neutrophil aggregation by magnolol is probably attributable, at least in part, to the direct suppression of PKC activity through blockade of the regulatory region of PKC. Magnolol, a substance purified from the bark of Magnolia officialis, inhibits cell proliferation and induces apoptosis in a variety of cancer cells. The aim of this study was to study the effects of magnolol on CGTH W-2 thyroid carcinoma cells. After 24 hr treatment with 80 u M magnolol in serum-containing medium, about 50% of the cells exhibited apoptotic features and 20% necrotic features. Cytochrome-c staining was diffused in the cytoplasm of the apoptotic cells, but restricted to the mitochondria in control cells. Western blot analyses showed an increase in levels of activated caspases (caspase-3 and -7) and of cleaved poly (ADP-ribose) polymerase (PARP) by magnolol. Concomitantly, immunostaining for apoptosis inducing factor (AIF) showed a time-dependent translocation from the mitochondria to the nucleus. Inhibition of either PARP or caspase activity blocked magnolol-induced apoptosis, supporting the involvement of the caspases and PARP. In addition, magnolol activated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and inactivated Akt by decreasing levels of phosphorylated PTEN and phosphorylated Akt. These data suggest that magnolol promoted apoptosis probably by alleviating the inhibitory effect of Akt on caspase 9. Furthermore, inhibition of PARP activity, but not of caspase activity, completely prevented magnolol-induced necrosis, suggesting the notion that it might be caused by depletion of intracellular ATP levels due to PARP activation. These results show that magnolol initiates apoptosis via the cytochrome-c/caspase 3/PARP/AIF and PTEN/Akt/caspase 9/PARP pathways and necrosis via PARP activation. The mis-regulation of nuclear factor-kappa B (NF-kappaB) signal pathway is involved in a variety of inflammatory diseases that leds to the production of inflammatory mediators. /These/ studies using human U937 promonocytes cells suggested that magnolol ... differentially down-regulated the pharmacologically induced expression of NF-kappaB-regulated inflammatory gene products MMP-9, IL-8, MCP-1, MIP-1alpha, TNF-alpha. Pre-treatment of magnolol blocked TNF-alpha-induced NF-kappaB activation in different cell types as evidenced by EMSA. Magnolol did not directly affect the binding of p65/p50 heterodimer to DNA. Immunoblot analysis demonstrated that magnolol inhibited the TNF-alpha-stimulated phosphorylation and degradation of the cytosolic NF-kappaB inhibitor IkappaBalpha and the effects were dose-dependent. Mechanistically, a non-radioactive IkappaB kinases (IKK) assay using immunoprecipitated IKKs protein demonstrated that magnolol inhibited both intrinsic and TNF-alpha-stimulated IKK activity, thus suggesting a critical role of magnolol in abrogating the phosphorylation and degradation of IkappaBalpha. The involvement of IKK was further verified in a HeLa cell NF-kappaB-dependent luciferase reporter system. In this system magnolol suppressed luciferase expression stimulated by TNF-alpha and by the transient transfection and expression of NIK (NF-kappaB-inducing kinase), wild type IKKbeta, constitutively active IKKalpha and IKKbeta, or the p65 subunit. Magnolol was also found to inhibit the nuclear translocation and phosphorylation of p65 subunit of NF-kappaB. In line with the observation that NF-kappaB activation may up-regulate anti-apoptotic genes, it was shown in U937 cells that magnolol enhanced TNF-alpha-induced apoptotic cell death. /The/ results suggest that magnolol or its derivatives may have potential anti-inflammatory actions through IKK inactivation. For more Mechanism of Action (Complete) data for MAGNOLOL (10 total), please visit the HSDB record page. |
Molecular Formula |
C18H18O2
|
|
---|---|---|
Molecular Weight |
266.32
|
|
Exact Mass |
266.13
|
|
CAS # |
528-43-8
|
|
Related CAS # |
|
|
PubChem CID |
72300
|
|
Appearance |
White to off-white solid powder
|
|
Density |
1.1±0.1 g/cm3
|
|
Boiling Point |
401.0±40.0 °C at 760 mmHg
|
|
Melting Point |
99 - 101ºC
|
|
Flash Point |
184.5±21.9 °C
|
|
Vapour Pressure |
0.0±1.0 mmHg at 25°C
|
|
Index of Refraction |
1.602
|
|
LogP |
3.94
|
|
Hydrogen Bond Donor Count |
2
|
|
Hydrogen Bond Acceptor Count |
2
|
|
Rotatable Bond Count |
5
|
|
Heavy Atom Count |
20
|
|
Complexity |
293
|
|
Defined Atom Stereocenter Count |
0
|
|
InChi Key |
VVOAZFWZEDHOOU-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C18H18O2/c1-3-5-13-7-9-17(19)15(11-13)16-12-14(6-4-2)8-10-18(16)20/h3-4,7-12,19-20H,1-2,5-6H2
|
|
Chemical Name |
5,5-diallyl-[1,1-biphenyl]-2,2-diol
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (9.39 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (9.39 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (9.39 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.7549 mL | 18.7744 mL | 37.5488 mL | |
5 mM | 0.7510 mL | 3.7549 mL | 7.5098 mL | |
10 mM | 0.3755 mL | 1.8774 mL | 3.7549 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.