yingweiwo

Mapracorat

Alias: ZK-245186; ZK 245186; Mapracorat; 887375-26-0; Mapracorat [USAN]; BOL303242X; ZK-245186; BOL303242-X; Mapracorat [USAN:INN]; ZK245186; BOL-303242; BOL303242; BOL 303242; BOL-303242-X; Mapracorat
Cat No.:V14975 Purity: ≥98%
Mapracorat, formerly known as BOL-303242-X and ZK-245186, is an selective glucocorticoid receptor agonists (SEGRAs) under clinical trials for the topical treatment of atopic dermatitis, inflammation following cataract surgery, and allergic conjunctivitis.
Mapracorat
Mapracorat Chemical Structure CAS No.: 887375-26-0
Product category: Glucocorticoid Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
Other Sizes

Other Forms of Mapracorat:

  • (S)-Mapracorat
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Mapracorat, formerly known as BOL-303242-X and ZK-245186, is an selective glucocorticoid receptor agonists (SEGRAs) under clinical trials for the topical treatment of atopic dermatitis, inflammation following cataract surgery, and allergic conjunctivitis. Mapracorat inhibits hyperosmolar-induced cytokine release and MAPK pathways in human corneal epithelial cells.

Biological Activity I Assay Protocols (From Reference)
Targets
Glucocorticoid receptor
ln Vitro
Mapracorat has an IC50 value of about 0.2 nM and inhibits TNFα secretion from activated canine PBMC in a concentration-dependent manner.
Mapracorat concentration dependently inhibited TNFα secretion from activated canine PBMC with a half maximal inhibitory concentration (IC50) value of approximately 0.2 nmol/L.[1]
Mapracorat significantly reduced IL-4 or IL-13 plus TNF-α-induced cytokine release and ICAM-1 protein in a dose-dependent manner in both cell types, with comparable efficacy to dexamethasone. These effects were mediated through the glucocorticoid receptor (GR), as demonstrated by the reversal of inhibitory effects after silencing of glucocorticoid receptor expression. Conclusions: Data from these in vitro models indicate that mapracorat is efficacious and potent in reducing IL-4 or IL-13 plus TNF-α-induced release of allergy-related and proinflammatory cytokines from the HConF and the HConEpiC, supporting clinical evaluation of the compound in reducing allergic and inflammatory reactions in allergic conjunctivitis. [2]
ln Vivo
During the 60-minute observation period, compound 48/80 (50 μg in 50 μL of saline) administered intradermally caused notable wheal and flare reactions. When compared to areas treated with acetone, the topical pretreatment of Mapracorat (0.1%) dramatically decreased wheal and flare reactions.
Intradermal injection of compound 48/80 (50 μg in 50 μL saline) resulted in a clear wheal and flare reaction over the 60 min observation period. Topical pre-treatment with mapracorat (0.1%) and triamcinolone acetonide (0.015%) led to significant reduction in the wheal and flare responses compared to vehicle (acetone) treated areas. However, once daily topical administration of triamcinolone acetonide significantly reduced skin fold thickness from day 8 to 14, whereas no such reduction was observed for mapracorat. Conclusion These results demonstrate that mapracorat has comparable anti-inflammatory efficacy to classical steroidal glucocorticoids under these experimental settings and maintenance of skin fold thickness indicates a better safety profile compared to triamcinolone acetonide at equipotent concentrations. This profile further suggests that SEGRAs show promise in the management of inflammatory and pruritic skin diseases in dogs.[1]
Cell Assay
Purpose: To determine the ocular anti-allergic effects of mapracorat, a novel selective glucocorticoid receptor agonist (SEGRA) in primary human conjunctival fibroblasts and epithelial cells.
Methods: Two primary human conjunctival cell types, human conjunctival epithelial cells (HConEpiC) and human conjunctival fibroblasts (HConF), were challenged with interleukin-4 (IL-4) or IL-13 plus tumor necrosis factor-alpha (TNF-α). Luminex technology was used to profile the resulting inflammatory response. The effects of mapracorat on the release of eotaxin and regulated on activation, normal T cell expressed and secreted (RANTES), two allergy-related chemokines, as well as proinflammatory cytokines and intercellular adhesion molecule 1 (ICAM-1) were then determined. Small interfering RNA was used to determine whether the effects of mapracorat were mediated via the glucocorticoid receptor (GR). Dexamethasone was used as the control.
Results: IL-13 or IL-4 plus TNF-α in the HConF or HConEpiC significantly increased eotaxin-1 (HConF only), eotaxin-3, RANTES, multiple proinflammatory cytokines, and ICAM-1. Synergistic effects of IL-13 or IL-4 plus TNF-α were observed in the HConEpiC for RANTES and monocyte chemoattractant protein-1, and in the HConF for eotaxin-1, eotaxin-3, and RANTES. [2]
Animal Protocol
Objectives: To compare the efficacy and safety of mapracorat with classical glucocorticoids used for the treatment of allergic skin diseases in dogs.
Animals: Six laboratory beagles.
The effect of mapracorat on lipopolysaccharide-induced TNFα secretion from canine peripheral blood derived mononuclear cells (PBMC) was tested. In vivo, mapracorat was compared to triamcinolone acetonide using a skin inflammation model. Skin fold thickness was determined after daily administration of mapracorat and triamcinolone acetonide over 14 days. [1]
References

[1]. The selective glucocorticoid receptor agonist mapracorat displays a favourable safety-efficacy ratio for the topical treatment of inflammatory skin diseases in dogs. Vet Dermatol. 2017 Feb; 28(1):46-e11.

[2]. Anti-allergic effects of mapracorat, a novel selective glucocorticoid receptor agonist, in human conjunctival fibroblasts and epithelial cells. Mol Vis. 2013 Jul 19:19:1515-25.

Additional Infomation
Mapracorat is a nonsteroidal Selective Glucocorticoid Receptor Agonist (SEGRA) that is presumed to have a better therapeutic index compared to classical glucocorticoids.
Mapracorat is an aminoquinoline.
Mapracorat has been investigated for the treatment of Eczema and Atopic Dermatitis.
Purpose: Glucocorticoids can either suppress gene transcription (transrepression) or activate it (transactivation). This latter process may contribute to certain side effects caused by these agents. Mapracorat (also known as BOL-303242-X or ZK 245186) is a novel selective glucocorticoid receptor agonist that maintains a beneficial anti-inflammatory activity but seems to be less effective in transactivation, resulting in a lower potential for side effects; it has been proposed for the topical treatment of inflammatory skin disorders. This study assessed the anti-allergic activity of mapracorat at the ocular level and whether eosinophils and mast cells are targets of its action.

Methods: With in vitro studies apoptosis was evaluated in human eosinophils by flow cytometry and western blot of caspase-3 fragments. Eosinophil migration toward platelet-activating factor was evaluated by transwell assays. Interleukin (IL)-6, IL-8, tumor necrosis factor-α (TNF-α), and the chemokine (C-C motif) ligand 5 (CCL5)/regulated upon activation normal T cell expressed, and presumably secreted (RANTES) were measured using a high-throughput multiplex luminex technology. Annexin I and the chemochine receptor C-X-C chemokine receptor 4 (CXCR4) were detected by flow cytometry. With in vivo studies, allergic conjunctivitis was induced in guinea pigs sensitized to ovalbumin by an ocular allergen challenge and evaluated by a clinical score. Conjunctival eosinophils were determined by microscopy or eosinophil peroxidase assay.

Results: In cultured human eosinophils, mapracorat showed the same potency as dexamethasone but displayed higher efficacy in increasing spontaneous apoptosis and in counteracting cytokine-sustained eosinophil survival. These effects were prevented by the glucocorticoid receptor antagonist mifepristone. Mapracorat inhibited eosinophil migration and IL-8 release from eosinophils or the release of IL-6, IL-8, CCL5/RANTES, and TNF-α from a human mast cell line with equal potency as dexamethasone, whereas it was clearly less potent than this glucocorticoid in inducing annexin I and CXCR4 expression on the human eosinophil surface; this was taken as a possible sign of glucocorticoid-dependent transactivation. In the guinea pig, mapracorat or dexamethasone eye drops induced an analogous reduction in clinical symptoms of allergic conjunctivitis and conjunctival eosinophil accumulation.

Conclusions: Mapracorat appears to be a promising candidate for the topical treatment of allergic eye disorders. It maintains an anti-allergic profile similar to that of dexamethasone but seems to have fewer transactivation effects in comparison to this classical glucocorticoid. Some of its cellular targets may contribute to eosinophil apoptosis and/or to preventing their recruitment and activation and to inhibiting the release of cytokines and chemokines. https://pubmed.ncbi.nlm.nih.gov/22194647/
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H26F4N2O2
Molecular Weight
462.4886
Exact Mass
462.193
Elemental Analysis
C, 64.93; H, 5.67; F, 16.43; N, 6.06; O, 6.92
CAS #
887375-26-0
Related CAS #
(S)-Mapracorat;887375-15-7
PubChem CID
24795088
Appearance
Light yellow to yellow solid powder
LogP
5.763
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
6
Heavy Atom Count
33
Complexity
675
Defined Atom Stereocenter Count
1
SMILES
CC1=NC2=C(C=C1)C(=CC=C2)NC[C@](CC(C)(C)C3=CC(=CC4=C3OCC4)F)(C(F)(F)F)O
InChi Key
VJGFOYBQOIPQFY-XMMPIXPASA-N
InChi Code
InChI=1S/C25H26F4N2O2/c1-15-7-8-18-20(5-4-6-21(18)31-15)30-14-24(32,25(27,28)29)13-23(2,3)19-12-17(26)11-16-9-10-33-22(16)19/h4-8,11-12,30,32H,9-10,13-14H2,1-3H3/t24-/m1/s1 SMILES
Chemical Name
(2R)-1,1,1-trifluoro-4-(5-fluoro-2,3-dihydro-1-benzofuran-7-yl)-4-methyl-2-[[(2-methylquinolin-5-yl)amino]methyl]pentan-2-ol
Synonyms
ZK-245186; ZK 245186; Mapracorat; 887375-26-0; Mapracorat [USAN]; BOL303242X; ZK-245186; BOL303242-X; Mapracorat [USAN:INN]; ZK245186; BOL-303242; BOL303242; BOL 303242; BOL-303242-X; Mapracorat
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 33.6 mg/mL (~72.65 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1622 mL 10.8110 mL 21.6221 mL
5 mM 0.4324 mL 2.1622 mL 4.3244 mL
10 mM 0.2162 mL 1.0811 mL 2.1622 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
HPA Axis Study in Adults
CTID: NCT01408511
Phase: Phase 2
Status: Completed
Date: 2023-10-31
HPA Axis Study in Japanese Adults
CTID: NCT01407510
Phase: Phase 2
Status: Completed
Date: 2023-09-21
Dose Escalation of Different Concentrations of ZK 245186 in Atopic Dermatitis
CTID: NCT00944632
Phase: Phase 2
Status: Completed
Date: 2023-06-07
Evaluation of BOL-303242-X Versus Vehicle for the Treatment of Inflammation Following Cataract Surgery
CTID: NCT00905450
Phase: Phase 2

Status: Completed
Date: 2020-09-22
Mapracorat Ophthalmic Formulation in Subjects With Allergic Conjunctivitis
CTID: NCT01289431
Phase: Phase 2
Status: Completed
Date: 2020-09-04
Contact Us