Size | Price | Stock | Qty |
---|---|---|---|
2mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
Purity: ≥98%
MCOPPB 3HCl is a novel and potent nonpeptide agonist of nociceptin receptor with pKi of 10.07 and may be used as an anxiolytic agent. MCOPPB has a high affinity for the human NOP [N/OFQ (nociceptin/orphanin FQ) peptide] receptor (pKi = 10.07 +/- 0.01) and selectivity for the NOP receptor over other members of the opioid receptor family: 12-, 270- and >1000-fold more selective for the NOP receptor than for the micro-, kappa-, and delta-receptor, respectively. In an ex vivo binding study, MCOPPB (10 mg/kg, p.o.) inhibited signaling through the NOP receptor in the mouse brain, suggesting that it penetrated into the brain after it was orally administered. In the mouse Vogel conflict test, MCOPPB (10 mg/kg, p.o.) and diazepam (3 mg/kg, p.o.) elicited anxiolytic-like effects, although MCOPPB produced a bell-shaped response curve. In addition, MCOPPB (10 mg/kg, p.o.) was still effective as an anxiolytic agent even after repeated administration for 5 days. MCOPPB at an oral dose of 10 mg/kg did not affect locomotor activity or memory, nor did it contribute to ethanol-induced hypnosis. On the other hand, the benzodiazepine-type anxiolytic agent diazepam caused memory deficits and enhanced ethanol-induced hypnosis. These findings suggest that MCOPPB - a compound with few adverse effects on the central nervous system - is a potential therapeutic agent for the treatment of anxiety.
References |
J Pharmacol Sci.2008 Mar;106(3):361-8;J Med Chem.2009 Feb 12;52(3):610-25.
|
---|
Molecular Formula |
C26H43CL3N4
|
|
---|---|---|
Molecular Weight |
518.01
|
|
Exact Mass |
516.255
|
|
CAS # |
1108147-88-1
|
|
Related CAS # |
1108147-88-1(HCl);1028969-49-4;
|
|
PubChem CID |
25208093
|
|
Appearance |
Typically exists as solid at room temperature
|
|
LogP |
8.315
|
|
Hydrogen Bond Donor Count |
4
|
|
Hydrogen Bond Acceptor Count |
3
|
|
Rotatable Bond Count |
3
|
|
Heavy Atom Count |
33
|
|
Complexity |
535
|
|
Defined Atom Stereocenter Count |
1
|
|
SMILES |
CC1(N2CCC(N3C4=CC=CC=C4N=C3[C@H]5CNCCC5)CC2)CCCCCCC1.[H]Cl.[H]Cl.[H]Cl
|
|
InChi Key |
DTIPEVOPCGEULQ-RFCADEKQSA-N
|
|
InChi Code |
InChI=1S/C26H40N4.3ClH/c1-26(15-7-3-2-4-8-16-26)29-18-13-22(14-19-29)30-24-12-6-5-11-23(24)28-25(30)21-10-9-17-27-20-21;;;/h5-6,11-12,21-22,27H,2-4,7-10,13-20H2,1H3;3*1H/t21-;;;/m1.../s1
|
|
Chemical Name |
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.9305 mL | 9.6523 mL | 19.3046 mL | |
5 mM | 0.3861 mL | 1.9305 mL | 3.8609 mL | |
10 mM | 0.1930 mL | 0.9652 mL | 1.9305 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.