yingweiwo

Meropenem (SM 7338)

Alias: Meropenem; ICI 194660; ICI-194660; ICI194660; SM-7338; SM 7338; SM7338; Vabomere
Cat No.:V2218 Purity: ≥98%
Meropenem (formerly known as SM-7338; SM7338;ICI194660;Vabomere; Merrem), a beta-lactam of the carbapenem class, is an ultra-broad-spectrum injectable β-lactam antibiotic used to treat a wide variety of infections.
Meropenem (SM 7338)
Meropenem (SM 7338) Chemical Structure CAS No.: 96036-03-2
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of Meropenem (SM 7338):

  • Meropenem trihydrate (SM 7338)
  • Meropenem-d6 (SM 7338-d6)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Meropenem (formerly known as SM-7338; SM7338; ICI194660; Vabomere; Merrem), a beta-lactam of the carbapenem class, is an ultra-broad-spectrum injectable β-lactam antibiotic used to treat a wide variety of infections. Meropenem has been shown to inhibit penicillinase-negative, -positive and methicillin-susceptible staphylococci. Meropenem has an antibacterial spectrum which is broadly similar to that of imipenem but, whilst slightly less active against staphylococci and enterococci, it is more active against Pseudomonas aeruginosa, all Enterobacteriaceae and Haemophilus influenzae. Meropenem demonstrates antagonism with several other beta-lactams against strains producing Type I cephalosporinases.

Biological Activity I Assay Protocols (From Reference)
ln Vitro

In vitro activity: Meropenem has an antibacterial spectrum which is broadly similar to that of imipenem but, whilst slightly less active against staphylococci and enterococci, it is more active against Pseudomonas aeruginosa, all Enterobacteriaceae and Haemophilus influenzae. Meropenem is two- to four-fold more active than imipenem against Gram-negative organisms and its spectrum of antimicrobial activity is wider than those of all other drugs tested. Meropenem MICs are not significantly influenced by high inocula and the drug is generally bactericidal. Meropenem demonstrates antagonism with several other beta-lactams against strains producing Type I cephalosporinases. Meropenem binds most strongly to penicillin-binding protein 2 of Escherichia coli and Pseudomonas aeruginosa, and to penicillin-binding proteins 1 of Staphylococcus aureus. Meropenem is a new carbapenem antibiotic which differs chemically from imipenem/cilastatin by having a 1-beta-methyl substitution, providing it with excellent intrinsic stability to human renal dehydropeptidase-I. Meropenem has one identified metabolite, a beta-lactam ring-opened form which is devoid of microbiological activity.


Kinase Assay: Meropenem (SM 7338), a new parenteral carbapenem demonstrated increased activity as compared to imipenem against 336 strains of Neisseria gonorrhoeae, 119 strains of Haemophilus influenzae, and 110 strains of H. Ceftriaxone and ciprofloxacin demonstrated activity superior to that of both carbapenems while the activity of ceftazidime was similar to that of Meropenem (SM 7338).


Cell Assay: The meropenem MICs for penicillin-resistant Streptococcus pneumoniae were higher than for the penicillin-susceptible strains but the organisms remained susceptible. Clinical susceptibility in vitro to meropenem was defined by MICs of ≤ 4 mg/L, intermediate susceptibility by MICs of 8 mg/L and MICs of ≥ 16 mg/L define resistance; equivalent figures for zones of growth inhibition were ≥ 14 (susceptible), 12-13 (intermediate) and ≤ 11 (resistant) mm[1].Meropenem was 2- to 4-fold more active than imipenem against Gram-negative organisms and its spectrum of antimicrobial activity was wider than those of all other drugs tested.Meropenem inhibited all anaerobic bacteria at less than or equal to 8 mg/l and 0.25 mg/l inhibited 50% of strains. Meropenem MICs were not significantly influenced by high inocula and the drug was generally bactericidal.Meropenem bound most strongly to penicillin-binding protein 2 of Escherichia coli and Pseudomonas aeruginosa, and to penicillin-binding proteins 1 of Staphylococcus aureus. Meropenem had one identified metabolite, a β-lactam ring-opened form which is devoid of microbiological activity.

ln Vivo
Meropenem significantly increases the plamsa total clearance of valproate to about 1.5 times the control (6.09 mL/min/kg vs. 4.28 mL/min/kg) in rabbits. Meropenem significantly increases the urinary excretion of valproate- glucuronide in rabbits.
Animal Protocol
6.09 mL/min/kg vs. 4.28 mL/min/kg
In rabbits, meropenem significantly increased the plamsa total clearance of valproate to about 1.5 times compared to the control (6.09 mL/min/kg vs. 4.28 mL/min/kg). Meropenem significantly increased the urinary excretion of valproate- glucuronide in rabbits.
References
J Antimicrob Chemother.1995 Jul;36 Suppl A:1-17;J Antimicrob Chemother.1989 Sep;24 Suppl A:9-29;Pharm Res.2001 Sep;18(9):1320-6.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H25N3O5S
Molecular Weight
383.46
Elemental Analysis
C, 53.25; H, 6.57; N, 10.96; O, 20.86; S, 8.36
CAS #
96036-03-2
Related CAS #
Meropenem trihydrate;119478-56-7;Meropenem-d6;1217976-95-8
Appearance
White to light yellow crystalline powder.
SMILES
O=C(C(N12)=C(S[C@@H]3CN[ C@H](C(N(C)C)=O)C3)[ C@H](C)[C@]2([H])[C@@H]([ C@H](O)C)C1=O)O
InChi Key
DMJNNHOOLUXYBV-PQTSNVLCSA-N
InChi Code
InChI=1S/C17H25N3O5S/c1-7-12-11(8(2)21)16(23)20(12)13(17(24)25)14(7)26-9-5-10(18-6-9)15(22)19(3)4/h7-12,18,21H,5-6H2,1-4H3,(H,24,25)/t7-,8-,9+,10+,11-,12-/m1/s1
Chemical Name
(4R,5S,6S)-3-(((3S,5S)-5-(dimethylcarbamoyl)pyrrolidin-3-yl)thio)-6-((R)-1-hydroxyethyl)-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid
Synonyms
Meropenem; ICI 194660; ICI-194660; ICI194660; SM-7338; SM 7338; SM7338; Vabomere
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~260.78 mM)
Water : ~77 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.52 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (6.52 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (6.52 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 10% DMSO+40% PEG300+5% Tween-80+45% Saline: ≥ 2.5 mg/mL (6.52 mM)

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6078 mL 13.0392 mL 26.0783 mL
5 mM 0.5216 mL 2.6078 mL 5.2157 mL
10 mM 0.2608 mL 1.3039 mL 2.6078 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us