yingweiwo

Minocycline

Cat No.:V43855 Purity: ≥98%
Minocycline is an orally bioactive, semi-synthetic tetracycline antibiotic that can penetrate the BBB (blood-brain barrier).
Minocycline
Minocycline Chemical Structure CAS No.: 10118-90-8
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Minocycline:

  • Minocycline HCl
  • Minocycline-d6
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Minocycline is an orally bioactive, semi-synthetic tetracycline antibiotic that can penetrate the BBB (blood-brain barrier). Minocycline is a hypoxia-inducible factor (HIF-1α) inhibitor. Minocycline has anti-cancer, anti~inflammatory and glutamate antagonism effects. Minocycline reduces glutamate neurotransmission, displays neuro-protective (neuro-protection) properties and antidepressant effects. Minocycline inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, thereby producing a bacteriostatic (inhibition of bacterial growth) effect.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
OVCAR-3, SKOV-3, and A2780 are ovarian cancer cell lines whose proliferation and clonal activity are inhibited by minocycline (0-100 μM, 24-72 hours) [3]. Minocycline (0-100 μM, 24-48 hours) inhibits DNA incorporation and cyclins, which stops the cell cycle [3]. Ovarian cancer cell lines undergo apoptosis when exposed to minocycline (0-100 μM) for 72 hours [3]. Minocycline inhibits both caspase-dependent and caspase-independent cell death after exhibiting direct neuronal protection, a mechanism of protection that may be connected to the maintenance of mitochondrial integrity and cytochrome c [2]. Hypoxia-inducible factor (HIF)-1α is inhibited by minocycline, which also increases p53 protein levels and deactivates the AKT/mTOR/p70S6K/4E-BP1 pathway [6].
ln Vivo
In female nude mice, minocycline (0–30 mg/kg) taken orally once a day for four weeks inhibits the growth of OVCAR-3 tumors [3]. When given at large intraperitoneal doses, minocycline (IP) is a neuroprotective agent in animal models of cerebral ischemia [1]. Mice exposed to a single intraperitoneal injection of minocycline (0–40 mg/kg) can greatly reduce the development of behavioral sensitization and excessive movement brought on by METH [2]. The temporary middle cerebral artery occlusion model (TMCAO) can effectively reduce infarct size when administered intravenously with 3 or 10 mg/kg of minocycline once [1]. Serum levels (3 mg/kg) of minocycline (3–10 mg/kg IV, once) are comparable to those attained following the typical 200 mg dose in humans [1]. Rats' ischemia-induced ventricular arrhythmias are lessened by minocycline. The activation of the L-type Ca2+ channel, mitochondrial KATP channel, and PI3K/Akt signaling pathway may be connected to this effect [7].
Cell Assay
Cell proliferation assay[3]
Cell Types: Human ovarian cancer cell lines (OVCAR-3, SKOV-3 and A2780) and primary cells (HEK-293, HMEC, HUVEC, ATCC)
Tested Concentrations: 0, 1, 10, 50 and 100 μM
Incubation Duration: 24, 48 or 72 h
Experimental Results: Inhibited the proliferation of OVCAR-3, SKOV-3 and A2780 cells in a concentration-dependent manner, with IC50 values of 62.0, 56.1 and 59.5 μM respectively. There was no effect on the viability of HEK-293 or HUVEC.

Cell cycle analysis[3]
Cell Types: OVCAR-3, SKOV-3 and A2780 Cell
Tested Concentrations: 0, 10, 50 and 100 μM
Incubation Duration: 24 or 48 hrs (hours)
Experimental Results: G0-G1 phase cells were Block in a time-dependent manner. At 100 μM, the percentage of cells in S phase and G2-M phase diminished by more than 80%.

Western Blot Analysis[3]
Cell Types: OVCAR-3, SKOV-3 and A2780 Cell
Tested Concentrations: 0, 10, 50 and 100 μM
Incubation Duration: 72 hrs (hours)
Experimental Results: Cyclins A, B and E were expressed at low levels. caspase- increasing by 3 levels increased more than 3.0-fold at 100 μM. Minocy
Animal Protocol
Animal/Disease Models: Female nude mice (6 weeks old, 9 mice per group, each mouse was injected with OVCAR-3 cells subcutaneously (sc) (sc) on the left side of the abdomen) [3]
Doses: 10 or 30 mg/kg
Route of Administration: Oral administration through drinking water The drug was administered one time/day starting on the 8th day of cell inoculation for 4 weeks.
Experimental Results: Inhibited the growth of OVCAR-3 tumors in these female nude mice and diminished microvessel density.

Animal/Disease Models: Male Balb/cAnNCrICrIj mice (8 weeks old, 23-30 g, methamphetamine (METH, 3 mg/kg) subcutaneously (sc) (sc) (sc) in a volume of 10 ml/kg) [2]
Doses: 0, 10 , 20 or 40 mg/kg
Route of Administration: intraperitoneal (ip) injection, once, 30 minutes before METH administration
Experimental Results: At the 40 mg/kg dose, the development of METH-induced hyperlocomotion and behavioral hypersensitivity was Dramatically attenuated in mice. It had no effect on the induction of METH-induced hyperthermia in mice. Dramatically attenuated reductions in DA and DOPAC in the striatum. S
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Many reviews state that tetracyclines are contraindicated during breastfeeding because of possible staining of infants' dental enamel or bone deposition of tetracyclines. However, a close examination of available literature indicates that there is not likely to be harm in short-term use of minocycline during lactation because milk levels are low and absorption by the infant is inhibited by the calcium in breastmilk. Short-term use of minocycline is acceptable in nursing mothers. As a theoretical precaution, avoid prolonged or repeat courses during nursing. Monitor the infant for rash and for possible effects on the gastrointestinal flora, such as diarrhea or candidiasis (thrush, diaper rash). Black discoloration of breastmilk has been reported with minocycline. Topical minocycline for acne by the mother poses no risk to the breastfed infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
A woman taking minocycline 100 mg twice daily for almost 4 years developed galactorrhea after taking perphenazine, amitriptyline and diphenhydramine, and the breast secretion was black in color.
Another woman who had nursed her infant and produced occasional small amounts of breastmilk during the 18 months after weaning was given oral minocycline 150 mg daily. After 3 to 4 weeks, expressed milk had become black. Iron levels in milk were over 100 times greater than that found in normal milk. A mammogram was normal.
In both of these cases, macrophages containing a black, iron-containing pigment were found in milk. It is thought that the pigment is an iron chelate of minocycline or one of its metabolites.
References

[1]. Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats. BMC Neurol. 2004 Apr 26;4:7.

[2]. Protective effects of minocycline on behavioral changes and neurotoxicity in mice after administration of methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry. 2006 Dec 30;30(8):1381-93.

[3]. Minocycline inhibits growth of epithelial ovarian cancer. Gynecol Oncol. 2012 May;125(2):433-40.

[4]. Antidepressant-like actions of minocycline combined with several glutamate antagonists. Prog Neuropsychopharmacol Biol Psychiatry. 2008 Feb 15;32(2):380-6.

[5]. A review of intravenous minocycline for treatment of multidrug-resistant Acinetobacter infections. Clin Infect Dis. 2014 Dec 1;59 Suppl 6:S374-80.

[6]. Minocycline attenuates hypoxia-inducible factor-1α expression correlated with modulation of p53 and AKT/mTOR/p70S6K/4E-BP1 pathway in ovarian cancer: in vitro and in vivo studies. Am J Cancer Res. 2015 Jan 15;5(2):575-88.

[7]. Hu X, Wu B, Wang X, Xu C, He B, Cui B, Lu Z, Jiang H. Minocycline attenuates ischemia-induced ventricular arrhythmias in rats. Eur J Pharmacol. 2011 Mar 11;654(3):274-9.

Additional Infomation
Minocycline is a tetracycline analogue having a dimethylamino group at position 7 and lacking the methyl and hydroxy groups at position 5. It has a role as an antibacterial drug, an Escherichia coli metabolite and a geroprotector. It is a member of tetracyclines, a tetracenomycin and a tertiary alpha-hydroxy ketone. It is a conjugate acid of a minocycline(1-). It is a tautomer of a minocycline zwitterion.
Minocycline is a Tetracycline-class Drug. The physiologic effect of minocycline is by means of Decreased Prothrombin Activity.
A TETRACYCLINE analog, having a 7-dimethylamino and lacking the 5 methyl and hydroxyl groups, which is effective against tetracycline-resistant STAPHYLOCOCCUS infections.
See also: Minocycline (annotation moved to).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H27N3O7
Molecular Weight
457.48
Exact Mass
457.184
CAS #
10118-90-8
Related CAS #
Minocycline hydrochloride;13614-98-7;Minocycline-d6;1036070-10-6
PubChem CID
54675783
Appearance
Typically exists as solid at room temperature
Density
1.6±0.1 g/cm3
Boiling Point
803.3±65.0 °C at 760 mmHg
Flash Point
439.6±34.3 °C
Vapour Pressure
0.0±3.0 mmHg at 25°C
Index of Refraction
1.718
LogP
-0.65
Hydrogen Bond Donor Count
5
Hydrogen Bond Acceptor Count
9
Rotatable Bond Count
3
Heavy Atom Count
33
Complexity
971
Defined Atom Stereocenter Count
4
SMILES
CN(C1=CC=C(O)C2=C1C[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C([C@@]4(O)C(O)=C3C2=O)=O)C
InChi Key
FFTVPQUHLQBXQZ-KVUCHLLUSA-N
InChi Code
InChI=1S/C23H27N3O7/c1-25(2)12-5-6-13(27)15-10(12)7-9-8-11-17(26(3)4)19(29)16(22(24)32)21(31)23(11,33)20(30)14(9)18(15)28/h5-6,9,11,17,27-28,31,33H,7-8H2,1-4H3,(H2,24,32)/t9-,11-,17-,23-/m0/s1
Chemical Name
(4S,4aS,5aR,12aR)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4H-tetracene-2-carboxamide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1859 mL 10.9294 mL 21.8589 mL
5 mM 0.4372 mL 2.1859 mL 4.3718 mL
10 mM 0.2186 mL 1.0929 mL 2.1859 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us