yingweiwo

MK-1064

Alias: MK-1064; MK1064; 5''-chloro-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2,2':5',3''-terpyridine-3'-carboxamide; 5-(5-chloropyridin-3-yl)-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2-pyridin-2-ylpyridine-3-carboxamide; O812716S9E; CHEMBL3338866; MK 1064
Cat No.:V2874 Purity: ≥98%
MK-1064 (MK1064) is a novel, potent, selective and orally bioavailable antagonist of Orexin OX2 Receptor (OX2R), with the potential to be used for the treatment of insomnia.
MK-1064
MK-1064 Chemical Structure CAS No.: 1207253-08-4
Product category: OX Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

MK-1064 (MK1064) is a novel, potent, selective and orally bioavailable antagonist of Orexin OX2 Receptor (OX2R), with the potential to be used for the treatment of insomnia. Orexin receptors (OX1R, OX2R) are the primary mediators of arousal promotion, and they are used by orexin neuropeptides to control sleep/wake cycles. An antagonist of OX2R singlet is MK-1064. MK-1064 has been shown in preclinical settings to enhance sleep in rats by increasing both REM and NREM sleep at OX2R occupancies higher than those seen with dual orexin receptor antagonists. Like dual antagonists, MK-1064 helps dogs sleep longer in both NREM and REM phases without making them cataplexy. MK-1064 demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep.

Biological Activity I Assay Protocols (From Reference)
Targets
OX1 ( IC50 = 1789 nM ); OX2 ( IC50 = 18 nM ); OX1 ( Ki = 1584 nM ); OX2 ( Ki = 0.5 nM )
ln Vitro

In vitro activity: MK-1064 is an innovative, strong, specific, and orally bioavailable antagonist of the Orexin OX2 Receptor that may be used to treat sleeplessness. Through orexin receptors (OX1R, OX2R), orexin neuropeptides control sleep and wakefulness; OX2R is the main mediator of arousal promotion. MK-1064 is an antagonist of OX2R single. Preclinically, MK-1064 increases sleep in rats at OX2R occupancies higher than those seen for dual orexin receptor antagonists. It also increases both REM and NREM sleep.

ln Vivo
MK-1064 (30 mg/kg, oral administration) electively induces sleep via OX2R in wild-type mice in rodents[2].
MK-1064 (30 mg/kg, oral administration, 5 days) reverses the struggle behavior that rats pretreated with CNO had developed[3].
MK-1064 (1-5 mg/kg, intravenous injection/oral administration) exhibits moderate oral bioavailability and clearance in rat, dog, and rhesus monkey[1].
Animal Protocol
MK-1064, a selective OX2R antagonist, (Roecker et al., 2014) was dissolved overnight in 20% Vitamin E d-a-tocopherol polyethylene glycol 1000 succinate (Vit E-TPGS). Rats were orally administered either 20% Vit E-TPGS as vehicle or 30 mg/kg MK-1064, both at 1 mL/kg for consistent volume. All animals were given a vehicle dose 1 day prior to the start of the restraint paradigm to habituate to the oral gavage procedure. Animals received injections of vehicle (20% Vit E TPGS, p.o.) or MK-1064 and vehicle (saline and 8% DMSO, i.p.) or CNO 90 min prior to the start of the 30-min restraint. This timing was chosen based on the fact that both MK-1064 and CNO have been shown to promote behavioral effects in the rat within 30 min of administration and effects last up to 4 h after administration (Alexander et al., 2009; Farrell and Roth, 2013; Hasegawa et al., 2014; Roecker et al., 2014). Additionally, CNO was given at the time of MK-1064 injection to minimize the effects of repeated handling prior to restraint.
Assessing HPA reactivity to acute or repeated restraint with orexin manipulations[3]
A naïve cohort of rats injected with DREADD-containing virus was exposed to either 1 or 5 consecutive days of restraint with injections of vehicle or CNO IP and either vehicle or MK-1064 administered PO 90 min prior to each restraint. See Fig. 3A for depiction of experimental paradigm. Animals were weighed on Day 1 and Day 5 of restraint. Video cameras were set up above the restrainers in order to record struggle behavior on day 2 of restraint. While rats are in the restrainer for 30 min, most of the struggle behavior occurs within the first 10 min. Therefore, we analyzed struggle behavior during this time period. A trained investigator blind to experimental groups hand scored struggle behavior – defined as attempts to escape, or intense movement of the animal while in the restrainer. Blood was collected on Day 1 and Day 5 of restraint to assess the HPA response to acute and repeated restraint, respectively. Briefly, on day 1, tail blood was taken at 0 min (prior to being placed in restraint), again at 15 min and 30 min (during restraint), and at 60 min (recovery time point in the home cage). Plasma corticosterone and Adrenocorticotropic Hormone (ACTH) were assayed with a Radioimmunoassay kit from MP Biomedical. The minimum levels of detection for ACTH and corticosterone were 5.7 pg/ml and 0.6 μg/dl, respectively. Intra-and interassay variability was less than 10%.
Wild-type and OX2R knockout mice
30 mg/kg
Oral administration
References

[1]. Discovery of 5''-chloro-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2,2':5',3''-terpyridine-3'-carboxamide (MK-1064): a selective orexin 2 receptor antagonist (2-SORA) for the treatment of insomnia. ChemMedChem. 2014 Feb;9(2):311-22.

[2]. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man. Sci Rep. 2016 Jun 3;6:27147.

[3]. Orexin 2 receptor regulation of the hypothalamic-pituitary-adrenal (HPA) response to acute and repeated stress. Neuroscience. 2017 Apr 21;348:313-323.

Additional Infomation
MK-1064 is under investigation in clinical trial NCT02549014 (A Single Dose Study of the Safety, Pharmacokinetics and Pharmacodynamics of MK-1064 (MK-1064-001)).
The field of small-molecule orexin antagonist research has evolved rapidly in the last 15 years from the discovery of the orexin peptides to clinical proof-of-concept for the treatment of insomnia. Clinical programs have focused on the development of antagonists that reversibly block the action of endogenous peptides at both the orexin 1 and orexin 2 receptors (OX1R and OX2R), termed dual orexin receptor antagonists (DORAs), affording late-stage development candidates including Merck’s suvorexant (new drug application filed 2012). Full characterization of the pharmacology associated with antagonism of either OX1R or OX2R alone has been hampered by the dearth of suitable subtype-selective, orally bioavailable ligands. Herein, we report the development of a selective orexin 2 antagonist (2-SORA) series to afford a potent, orally bioavailable 2-SORA ligand. Several challenging medicinal chemistry issues were identified and overcome during the development of these 2,5-disubstituted nicotinamides, including reversible CYP inhibition, physiochemical properties, P-glycoprotein efflux and bioactivation. This article highlights structural modifications the team utilized to drive compound design, as well as in vivo characterization of our 2-SORA clinical candidate, 5′′-chloro-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2,2′:5′,3′′-terpyridine-3′-carboxamide (MK-1064), in mouse, rat, dog, and rhesus sleep models.[1]
Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism.[2]
Orexins are hypothalamic neuropeptides that have a documented role in mediating the acute stress response. However, their role in habituation to repeated stress, and the role of orexin receptors (OX1R and OX2R) in the stress response, has yet to be defined. Orexin neuronal activation and levels in the cerebrospinal fluid (CSF) were found to be stimulated with acute restraint, but were significantly reduced by day five of repeated restraint. As certain disease states such as panic disorder are associated with increased central orexin levels and failure to habituate to repeated stress, the effect of activating orexin signaling via Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) on the hypothalamic-pituitary-adrenal (HPA) response was evaluated after repeated restraint. While vehicle-treated rats displayed habituation of Adrenocorticotropic Hormone (ACTH) from day 1 to day 5 of restraint, stimulating orexins did not further increase ACTH beyond vehicle levels for either acute or repeated restraint. We delineated the roles of orexin receptors in acute and repeated stress using a selective OX2R antagonist (MK-1064). Pretreatment with MK-1064 reduced day 1 ACTH levels, but did not allow further habituation on day 5 compared with vehicle-treated rats, indicating that endogenous OX2R activity plays a role in acute stress, but not in habituation to repeated stress. However, in restrained rats with further stimulated orexins by DREADDs, MK-1064 decreased ACTH levels on day 5. Collectively, these results indicate that the OX2R plays a role in acute stress, and can prevent habituation to repeated stress under conditions of high orexin release.[3]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H20CLN5O3
Molecular Weight
461.91
Exact Mass
461.125
Elemental Analysis
C, 62.41; H, 4.36; Cl, 7.67; N, 15.16; O, 10.39
CAS #
1207253-08-4
Related CAS #
1207253-08-4
PubChem CID
44633765
Appearance
White to off-white solid powder
Density
1.3±0.1 g/cm3
Boiling Point
662.4±55.0 °C at 760 mmHg
Flash Point
354.4±31.5 °C
Vapour Pressure
0.0±2.0 mmHg at 25°C
Index of Refraction
1.619
LogP
3.04
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
7
Heavy Atom Count
33
Complexity
629
Defined Atom Stereocenter Count
0
SMILES
ClC1=C([H])N=C([H])C(=C1[H])C1C([H])=NC(C2=C([H])C([H])=C([H])C([H])=N2)=C(C(N([H])C([H])([H])C2C([H])=C([H])C(=C(N=2)OC([H])([H])[H])OC([H])([H])[H])=O)C=1[H]
InChi Key
CKTWQGHVNRYNCM-UHFFFAOYSA-N
InChi Code
InChI=1S/C24H20ClN5O3/c1-32-21-7-6-18(30-24(21)33-2)14-29-23(31)19-10-16(15-9-17(25)13-26-11-15)12-28-22(19)20-5-3-4-8-27-20/h3-13H,14H2,1-2H3,(H,29,31)
Chemical Name
5-(5-chloropyridin-3-yl)-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2-pyridin-2-ylpyridine-3-carboxamide
Synonyms
MK-1064; MK1064; 5''-chloro-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2,2':5',3''-terpyridine-3'-carboxamide; 5-(5-chloropyridin-3-yl)-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2-pyridin-2-ylpyridine-3-carboxamide; O812716S9E; CHEMBL3338866; MK 1064
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 50~98 mg/mL (108.3~199.2 mM)
Water: N/A
Ethanol: N/A
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.41 mM) (saturation unknown) in 10% DMSO + 40% PEG300 +5% Tween-80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 + to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1649 mL 10.8246 mL 21.6492 mL
5 mM 0.4330 mL 2.1649 mL 4.3298 mL
10 mM 0.2165 mL 1.0825 mL 2.1649 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02549014 Completed Drug: MK-1064
Drug: Placebo
Pharmacokinetics Merck Sharp & Dohme LLC July 6, 2009 Phase 1
NCT02549027 Completed Drug: MK-1064
Drug: Placebo
Drug: MK-6096
Polysomnography Merck Sharp & Dohme LLC November 6, 2009 Phase 1
Biological Data
  • MK-1064


    MK-1064 dose-dependently promotes somnolence and attenuates arousal in healthy human subjects.2016 Jun 3;6:27147.

  • MK-1064


    MK-1064 promotes sleep in healthy subjects.2016 Jun 3;6:27147.

  • MK-1064


    Sleep effects of MK-1064 30 mg/kg are OX2R-dependent.

    MK-1064

    Enrolment information for Phase I studies in healthy human volunteers.2016 Jun 3;6:27147.

  • MK-1064


    MK-1064 dose-dependently promotes both NREM and REM sleep during the active phase in rats.2016 Jun 3;6:27147.

  • MK-1064


    MK-1064 requires higher OX2R occupancies to promote sleep relative to DORA-12 in rats.2016 Jun 3;6:27147.

  • MK-1064


    MK-1064 effectively promotes somnolence but not cataplexy in canines.2016 Jun 3;6:27147.

Contact Us