Size | Price | Stock | Qty |
---|---|---|---|
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
Monomethyl auristatin F (MMAF) sodium is a highly potent tubulin inhibitor and an antineoplastic agent used as a warhead in ADCs (antibody-drug conjugates) such as vorsetuzumab mafodotin and SGN-CD19A. MMAF plus its attachment structure to the antibody are referred to as mafodotin in the International Nonproprietary Names for MMAF-antibody-conjugates. Since the N-terminal amino group of MMAF only has one methyl substituent rather than two, as it does in auristatin F itself, it is actually desmethyl-auristatin F.
Targets |
Auristatin
|
---|---|
ln Vitro |
MMAF prevents the growth of anaplastic large cell lymphoma. In vitro cytotoxicity assays yielded IC50 values of 119, 105, 257, and 200 nM for Karpas 299, breast carcinoma H3396, renal cell carcinoma 786-O, and Caki-1 cells[4].
|
References |
|
Molecular Formula |
C39H64N5NAO8
|
---|---|
Molecular Weight |
753.943942070007
|
Exact Mass |
753.465
|
CAS # |
1799706-65-2
|
Related CAS # |
MMAF;745017-94-1;MMAF hydrochloride;1415246-68-2;MMAF-d8 hydrochloride;MMAF sodium;1799706-65-2;MMAF-d8
|
PubChem CID |
139035010
|
Appearance |
White to off-white solid
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
9
|
Rotatable Bond Count |
21
|
Heavy Atom Count |
53
|
Complexity |
1170
|
Defined Atom Stereocenter Count |
9
|
SMILES |
CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@@H]([C@@H](C)C(=O)N[C@@H](CC2=CC=CC=C2)C(=O)[O-])OC)OC)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC.[Na+]
|
InChi Key |
LGMDBXMBHWLORJ-KMYLZLQDSA-M
|
InChi Code |
InChI=1S/C39H65N5O8.Na/c1-12-25(6)34(43(9)38(48)33(24(4)5)42-37(47)32(40-8)23(2)3)30(51-10)22-31(45)44-20-16-19-29(44)35(52-11)26(7)36(46)41-28(39(49)50)21-27-17-14-13-15-18-27;/h13-15,17-18,23-26,28-30,32-35,40H,12,16,19-22H2,1-11H3,(H,41,46)(H,42,47)(H,49,50);/q;+1/p-1/t25-,26+,28-,29-,30+,32-,33-,34-,35+;/m0./s1
|
Chemical Name |
sodium;(2S)-2-[[(2R,3R)-3-methoxy-3-[(2S)-1-[(3R,4S,5S)-3-methoxy-5-methyl-4-[methyl-[(2S)-3-methyl-2-[[(2S)-3-methyl-2-(methylamino)butanoyl]amino]butanoyl]amino]heptanoyl]pyrrolidin-2-yl]-2-methylpropanoyl]amino]-3-phenylpropanoate
|
Synonyms |
MMAF sodium; Monomethylauristatin F sodium
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: (1). This product requires protection from light (avoid light exposure) during transportation and storage. (2). Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture. (3). This product is not stable in solution, please use freshly prepared working solution for optimal results. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: ≥ 200 mg/mL (~265.3 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 5 mg/mL (6.63 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 5 mg/mL (6.63 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 5 mg/mL (6.63 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.3264 mL | 6.6318 mL | 13.2637 mL | |
5 mM | 0.2653 mL | 1.3264 mL | 2.6527 mL | |
10 mM | 0.1326 mL | 0.6632 mL | 1.3264 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
Clin Cancer Res . 2010 May 1;16(9):2562-70. td> |
Effect of MEDI-547 on in vitro tumor cell viability. A, Viability of cultured Hec-1A cells after treatment with 1C1 or antibody drug conjugates (IgG-mcMMAF or MEDI-547). Clin Cancer Res . 2010 May 1;16(9):2562-70. td> |
Effect of MEDI-547 therapy on endometrial cancer growth. Mice inoculated with Hec-1A A, Ishikawa B, or SPEC-2 C, received PBS (control), 1C1, control IgG-mcMMAF, or MEDI-547 (each at 3 mg/kg) after 2 weeks following cell line injection. Clin Cancer Res . 2010 May 1;16(9):2562-70. td> |