yingweiwo

Moxifloxacin (BAY12-8039)

Alias: Avelox;Avalox;Avelon;Vigamox;Moxeza;BAY12-8039;BAY12-8039;BAY 12-8039
Cat No.:V32679 Purity: ≥98%
Moxifloxacin (Avelox, Avalox,Avelon, Vigamox, Moxeza;BAY12-8039;BAY12-8039; BAY 12-8039) is an orally bioactive, broad spectrum and 4th generation antibiotic agent of the fluoroquinolone class with high activity against both Gram positive and Gram negative bacteria.
Moxifloxacin (BAY12-8039)
Moxifloxacin (BAY12-8039) Chemical Structure CAS No.: 151096-09-2
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of Moxifloxacin (BAY12-8039):

  • Moxifloxacin HCl (BAY12-8039)
  • (Rac)-Moxifloxacin ((Rac)-BAY 12-8039 free base)
  • Moxifloxacin-d4 (BAY 12-8039-d4 free base)
  • Moxifloxacin-d3 hydrochloride (BAY 12-8039-d3)
  • Moxifloxacin-d3-1 hydrochloride (moxifloxacin hydrochloride-d3; BAY 12-8039-d3-1)
  • rac cis-Moxifloxacin-d4 hydrochloride (rac cis-BAY 12-8039-d4)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Moxifloxacin (Avelox, Avalox, Avelon, Vigamox, Moxeza; BAY12-8039; BAY12-8039; BAY 12-8039) is an orally bioactive, broad spectrum and 4th generation antibiotic agent of the fluoroquinolone class with high activity against both Gram positive and Gram negative bacteria. It acts as an inhibitor of DNA topoisomerase II and topoisomerase IV.

Biological Activity I Assay Protocols (From Reference)
Targets
Quinolone
ln Vitro
The time-kill curve and inhibition of intracellular growth experiments are used to compare the in vitro activities of loxifloxacin and amoxicillin using a model of L. monocytogenes EGDe-infected mouse macrophages derived from bone marrow. Much more quickly, doxifloxacin starts to work in the first three hours of incubation and completely sterilizes the broth in the final twenty-four hours. Many of the cells are still alive after a 24-hour incubation period, suggesting that doxifloxacin may have a protective effect against macrophage lysis[3].
ln Vivo
Longer survival is associated with doxifloxacin (12 mg/kg; intravenous injection; once-three times daily; for 7 days; white male Wistar rats). Thirty hours after the bacterial challenge, tissue cultures reveal significantly less bacterial overgrowth in the lungs and spleens of moxifloxacin-treated animals than in saline-treated animals, and without any toxic effects[4].
Animal Protocol
Animal Model: Stenotrophomonas maltophilia infected 144 white male Wistar rats, weighing 300–400 g and maturing between 18 and 22 weeks[4].
Dosage: 12 mg/kg
Administration: Intravenous injection; once per day, twice per day, three times per day; for 7 days
Result: demonstrated a marked reduction in the overgrowth of bacteria in the lungs and spleens without being toxic.
References

[1]. Am J Health Syst Pharm, 2001. 58(5): p. 379-88.

[2]. Antimicrob Agents Chemother. 2008 May;52(5):1697-702.

[3]. Drugs. 2000 Jan;59(1):115-39.

[4]. Microbiol Immunol. 2014 Feb;58(2):96-102.

[5]. Tuberculosis (Edinb).2008 Mar;88(2):127-31

[6]. JPharmBiomedAnal.2005Jun1;38(1):8-13.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H24FN3O4
Molecular Weight
401.43
Exact Mass
401.18
Elemental Analysis
C, 62.83; H, 6.03; F, 4.73; N, 10.47; O, 15.94
CAS #
151096-09-2
Related CAS #
Moxifloxacin Hydrochloride;186826-86-8;(Rac)-Moxifloxacin;354812-41-2;Moxifloxacin-d4;2596386-23-9;Moxifloxacin-d3 hydrochloride;2734919-98-1;Moxifloxacin-d3-1 hydrochloride;1246816-75-0;Moxifloxacin-13C,d3 hydrochloride;rac cis-Moxifloxacin-d4 hydrochloride;1217802-65-7
Appearance
Solid powder
SMILES
Cl[H].FC1C([H])=C2C(C(C(=O)O[H])=C([H])N(C2=C(C=1N1C([H])([H])[C@]2([H])[C@@]([H])(C([H])([H])C([H])([H])C([H])([H])N2[H])C1([H])[H])OC([H])([H])[H])C1([H])C([H])([H])C1([H])[H])=O
InChi Key
FABPRXSRWADJSP-MEDUHNTESA-N
InChi Code
InChI=1S/C21H24FN3O4/c1-29-20-17-13(19(26)14(21(27)28)9-25(17)12-4-5-12)7-15(22)18(20)24-8-11-3-2-6-23-16(11)10-24/h7,9,11-12,16,23H,2-6,8,10H2,1H3,(H,27,28)/t11-,16+/m0/s1
Chemical Name
1-Cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-7-((4aS,7aS)-octahydro-6H-pyrrolo(3,4-b)pyridin-6-yl)-4-oxo-3-quinolinecarboxylic acid
Synonyms
Avelox;Avalox;Avelon;Vigamox;Moxeza;BAY12-8039;BAY12-8039;BAY 12-8039
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~31.25 mg/mL (~77.85 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.23 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (6.23 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (6.23 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4911 mL 12.4555 mL 24.9109 mL
5 mM 0.4982 mL 2.4911 mL 4.9822 mL
10 mM 0.2491 mL 1.2455 mL 2.4911 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Distribution of MICs of moxifloxacin for a collection of L . [2]. Antimicrob Agents Chemother. 2008 May;52(5):1697-702.
  • In vitro efficacies of moxifloxacin and amoxicillin against extracellular forms of L. monocytogenes. [2]. Antimicrob Agents Chemother. 2008 May;52(5):1697-702.
  • Effects of amoxicillin and moxifloxacin on morphological aspects of macrophages infected with L. monocytogenes.[2]. Antimicrob Agents Chemother. 2008 May;52(5):1697-702.
  • In vitro efficacies of moxifloxacin and amoxicillin against intracellular reservoirs of L. monocytogenes cells . [2]. Antimicrob Agents Chemother. 2008 May;52(5):1697-702.
Contact Us