yingweiwo

MRS-2395

Alias: 491611-55-3; MRS 2395; mrs2395; 2,2-DIMETHYL-PROPIONIC ACID 3-(2-CHLORO-6-METHYLAMINOPURIN-9-YL)-2-(2,2-DIMETHYL-PROPIONYLOXYMETHYL)-PROPYL ESTER; CHEMBL347921; [2-[[2-chloro-6-(methylamino)purin-9-yl]methyl]-3-(2,2-dimethylpropanoyloxy)propyl] 2,2-dimethylpropanoate; SCHEMBL690985; DTXSID40435170;
Cat No.:V49899 Purity: ≥98%
MRS2395 is a divaleryl analogue and a potent P2Y12 receptor blocker (antagonist).
MRS-2395
MRS-2395 Chemical Structure CAS No.: 491611-55-3
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
MRS2395 is a divaleryl analogue and a potent P2Y12 receptor blocker (antagonist). MRS2395 inhibits ADP-induced platelet activation with Ki of 3.6 μM. MRS2395 inhibits ADP-induced cAMP in rat platelets in the presence of PGE1 with IC50 of 7 µM. MRS2395 enhances platelet dense granule release in response to TRAP-6.
Biological Activity I Assay Protocols (From Reference)
Targets
P2Y12 receptor
ln Vitro
Inhibition of P2Y12 by MRS2395 enhances TRAP-6-induced platelet dense granule release. Inhibition of P2Y12 with MRS2395 enhances the localization of dense granules at the plasma membrane after platelet activation with TRAP-6. MRS2395-dependent potentiation of TRAP-6-induced dense granule secretion is PI3K-independent and PLC-dependent. MRS2395-dependent potentiation of TRAP-6-induced dense granule secretion is PKC and calcium-dependent. Glycogen Synthase Kinase 3β (GSK3β) plays a role in the ability of MRS2395 to potentiate platelet activation downstream of the PAR-1 receptor [2].
Enzyme Assay
Imaging of dense granule intracellular localization and reorganization by Superresolution Structured Illumination Microscopy (SR-SIM). [2]
For imaging experiments, 12mm #1.5 glass coverslips were coated with poly-L-lysine. Inhibitors (MRS2395, 10 μM; ticagrelor, 20 ng/mL; PSB 0739, 10 μM; AR-C 66096, 10 μM) were added to platelets in solution (4×107/mL) for 15 min prior to activation with TRAP-6 (10 μM) for 30 sec at 37ºC, followed by fixation with 4% paraformaldehyde and seeding onto proteins at room temperature for 1 hr. Adherent platelets were permeabilized with a blocking solution (1% BSA + 0.01% SDS in PBS). Platelets were then stained with CD63 (MX49.129.5) and MRP4/ABCC4 (D1Z3W) overnight at 4ºC at a 1:100 dilution in the blocking solution. Alexa Fluor secondary antibodies (1:500) were added in the blocking solution for 2 hrs. Coverslips were mounted with Fluoromount G onto glass slides. Platelets were imaged using SR-SIM with a Zeiss 100× oil immersion 1.46 NA alpha plan-apochromat lens on a Zeiss Elyra PS.1 microscope.
Cell Assay
Flow cytometry analysis. [2]
Flow cytometry experiments were carried out as previously described. Briefly, washed human platelets (2×108 /mL) were preincubated with vehicle (0.01% DMSO) or MRS2395 (10 μM) for 15 min at 37°C and then stimulated with ADP (10 μM final concentration) for 15 min in the presence of FITC-conjugated anti-human PAC-1 or APC-conjugated anti-human CD62P antibodies. Samples were then fixed by 1% paraformaldehyde for 10 min and diluted in HEPES/Tyrode buffer, followed by flow cytometric analysis on a FACSCantoII system. Data are expressed as percentage of the maximal response obtained in the response to ADP.
References

[1]. Acyclic analogues of adenosine bisphosphates as P2Y receptor antagonists: phosphate substitution leads to multiple pathways of inhibition of platelet aggregation. J Med Chem. 2002 Dec 19;45(26):5694-709.

[2]. Potentiation of TRAP-6-induced platelet dense granule release by blockade of P2Y 12 signaling with MRS2395. Platelets. 2018 Jun;29(4):383-394.

Additional Infomation
Activation by ADP of both P2Y(1) and P2Y(12) receptors in platelets contributes to platelet aggregation, and antagonists at these receptor subtypes have antithrombotic properties. In an earlier publication, we have characterized the SAR as P2Y(1) receptor antagonists of acyclic analogues of adenine nucleotides, containing two phosphate groups on a symmetrically branched aliphatic chain, attached at the 9-position of adenine. In this study, we have focused on antiaggregatory effects of P2Y antagonists related to a 2-chloro-N(6)-methyladenine-9-(2-methylpropyl) scaffold, containing uncharged substitutions of the phosphate groups. For the known nucleotide (cyclic and acyclic) bisphosphate antagonists of P2Y(1) receptors, there was a significant correlation between inhibition of aggregation induced by 3.3 microM ADP in rat platelets and inhibition of P2Y(1) receptor-induced phospholipase C (PLC) activity previously determined in turkey erythrocytes. Substitution of the phosphate groups with nonhydrolyzable phosphonate groups preserved platelet antiaggregatory activity. Substitution of one of the phosphate groups with O-acyl greatly reduced the inhibitory potency, which tended to increase upon replacement of both phosphate moieties of the acyclic derivatives with uncharged (e.g., ester) groups. In the series of nonsymmetrically substituted monophosphates, the optimal antagonist potency occurred with the phenylcarbamate group. Among symmetrical diester derivatives, the optimal antagonist potency occurred with the di(phenylacetyl) group. A dipivaloyl derivative, a representative uncharged diester, inhibited ADP-induced aggregation in both rat (K(I) 3.6 microM) and human platelets. It antagonized the ADP-induced inhibition of the cyclic AMP pathway in rat platelets (IC(50) 7 microM) but did not affect hP2Y(1) receptor-induced PLC activity measured in transfected astrocytoma cells. We propose that the uncharged derivatives are acting as antagonists of a parallel pro-aggregatory receptor present on platelets, that is, the P2Y(12) receptor. Thus, different substitution of the same nucleoside scaffold can target either of two P2Y receptors in platelets. [1]
The release of ADP from platelet dense granules and its binding to platelet P2Y12 receptors is key to amplifying the initial hemostatic response and propagating thrombus formation. P2Y12 has thus emerged as a therapeutic target to safely and effectively prevent secondary thrombotic events in patients with acute coronary syndrome or a history of myocardial infarction. Pharmacological inhibition of P2Y12 receptors represents a useful approach to better understand the signaling mediated by these receptors and to elucidate the role of these receptors in a multitude of platelet hemostatic and thrombotic responses. The present work examined and compared the effects of four different P2Y12 inhibitors (MRS2395, ticagrelor, PSB 0739, and AR-C 66096) on platelet function in a series of in vitro studies of platelet dense granule secretion and trafficking, calcium generation, and protein phosphorylation. Our results show that in platelets activated with the PAR-1 agonist TRAP-6 (thrombin receptor-activating peptide), inhibition of P2Y12 with the antagonist MRS2395, but not ticagrelor, PSB 0739 or AR-C 66096, potentiated human platelet dense granule trafficking to the plasma membrane and release into the extracellular space, cytosolic Ca2+ influx, and phosphorylation of GSK3β-Ser9 through a PKC-dependent pathway. These results suggest that inhibition of P2Y12 with MRS2395 may act in concert with PAR-1 signaling and result in the aberrant release of ADP by platelet dense granules, thus reducing or counteracting the anticipated anti-platelet efficacy of this inhibitor.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H30CLN5O4
Molecular Weight
439.93630361557
Exact Mass
439.199
CAS #
491611-55-3
PubChem CID
10071919
Appearance
Typically exists as solid at room temperature
LogP
3.389
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
11
Heavy Atom Count
30
Complexity
577
Defined Atom Stereocenter Count
0
SMILES
CC(C)(C)C(=O)OCC(CN1C=NC2=C(NC)N=C(Cl)N=C21)COC(=O)C(C)(C)C
InChi Key
NASABYJQIYJDID-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H30ClN5O4/c1-19(2,3)16(27)29-9-12(10-30-17(28)20(4,5)6)8-26-11-23-13-14(22-7)24-18(21)25-15(13)26/h11-12H,8-10H2,1-7H3,(H,22,24,25)
Chemical Name
[2-[[2-chloro-6-(methylamino)purin-9-yl]methyl]-3-(2,2-dimethylpropanoyloxy)propyl] 2,2-dimethylpropanoate
Synonyms
491611-55-3; MRS 2395; mrs2395; 2,2-DIMETHYL-PROPIONIC ACID 3-(2-CHLORO-6-METHYLAMINOPURIN-9-YL)-2-(2,2-DIMETHYL-PROPIONYLOXYMETHYL)-PROPYL ESTER; CHEMBL347921; [2-[[2-chloro-6-(methylamino)purin-9-yl]methyl]-3-(2,2-dimethylpropanoyloxy)propyl] 2,2-dimethylpropanoate; SCHEMBL690985; DTXSID40435170;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2730 mL 11.3652 mL 22.7304 mL
5 mM 0.4546 mL 2.2730 mL 4.5461 mL
10 mM 0.2273 mL 1.1365 mL 2.2730 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us