yingweiwo

N-Acetylmannosamine

Alias: N-Acetyl-D-mannosamine (ManNAc); DEX-M-74; DEX M-74; DEXM74; DEX M 74; ManNAc;
Cat No.:V4915 Purity: ≥98%
N-Acetyl-d-mannosamine (also known as N-Acetyl-D-mannosamine; ManNAc; DEX M-74) is a compound that has the potential for the treatment of neural disorders such as hereditary inclusion body myopathyan.
N-Acetylmannosamine
N-Acetylmannosamine Chemical Structure CAS No.: 3615-17-6
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
2g
Other Sizes

Other Forms of N-Acetylmannosamine:

  • N-Acetyl-D-mannosamine (Cyclic ManNAc)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

N-Acetyl-d-mannosamine (also known as N-Acetyl-D-mannosamine; ManNAc; DEX M-74) is a compound that has the potential for the treatment of neural disorders such as hereditary inclusion body myopathyan. It is also an essential precursor of N-acetylneuraminic acid (NeuAc), the specific monomer of bacterial capsular polysialic acid (PA). N-Acetyl-D-mannosamine (ManNAc) can be metabolized by GNE and GlcNAc 2-epimerase (Renin binding protein, RnBP), into ManNAc-6-phosphate and GlcNAc, respectively. N-Acetyl-d-mannosamine (ManNAc) and its derivatives activates hypocretin (HCRT) gene expression in the orexin neurons, providing a potential model for the testing of a therapy for neural disorders.

Biological Activity I Assay Protocols (From Reference)
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C8H15NO6
Molecular Weight
221.2078
Exact Mass
221.09
Elemental Analysis
C, 40.17; H, 7.16; N, 5.86; O, 46.82
CAS #
3615-17-6
Related CAS #
Cyclic N-Acetyl-D-mannosamine;7772-94-3;N-Acetyl-D-mannosamine-13C;N-Acetyl-D-mannosamine-13C-1;N-Acetyl-D-mannosamine-15N
Appearance
Solid powder
SMILES
CC(N[C@@H]([C@@H](O)[C@H](O)[C@H](O)CO)C=O)=O.[H]O[H]
InChi Key
KVWIBLJBIFTKIZ-XNJRRJNCSA-N
InChi Code
InChI=1S/C8H15NO6.H2O/c1-4(12)9-5(2-10)7(14)8(15)6(13)3-11;/h2,5-8,11,13-15H,3H2,1H3,(H,9,12);1H2/t5-,6-,7-,8-;/m1./s1
Chemical Name
N-((2S,3R,4S,5R)-3,4,5,6-tetrahydroxy-1-oxohexan-2-yl)acetamide hydrate
Synonyms
N-Acetyl-D-mannosamine (ManNAc); DEX-M-74; DEX M-74; DEXM74; DEX M 74; ManNAc;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~125 mg/mL (~565.07 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 25 mg/mL (113.01 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.5206 mL 22.6030 mL 45.2059 mL
5 mM 0.9041 mL 4.5206 mL 9.0412 mL
10 mM 0.4521 mL 2.2603 mL 4.5206 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Generation of orexin neurons from human induced pluripotent stem cells (hiPSCs) by ManNAc treatment. [2].Reactivation of hyperglycemia-induced hypocretin (HCRT) gene silencing by N-acetyl-d-mannosamine in the orexin neurons derived from human iPS cells. Epigenetics. 2017 Sep;12(9):764-778.
  • Generation of human orexin neuron by treatment with ManNAc derivatives. [2].Reactivation of hyperglycemia-induced hypocretin (HCRT) gene silencing by N-acetyl-d-mannosamine in the orexin neurons derived from human iPS cells. Epigenetics. 2017 Sep;12(9):764-778.
  • Acute response of ManNFAc-treated cells to neural and peripheral metabolic signals. [2].Reactivation of hyperglycemia-induced hypocretin (HCRT) gene silencing by N-acetyl-d-mannosamine in the orexin neurons derived from human iPS cells. Epigenetics. 2017 Sep;12(9):764-778.
  • Effects of ManNAc and its derivatives on the metabolome. [2].Reactivation of hyperglycemia-induced hypocretin (HCRT) gene silencing by N-acetyl-d-mannosamine in the orexin neurons derived from human iPS cells. Epigenetics. 2017 Sep;12(9):764-778.
  • Epigenetic changes at the HCRT gene locus from hiPSCs to hiONs. [2].Reactivation of hyperglycemia-induced hypocretin (HCRT) gene silencing by N-acetyl-d-mannosamine in the orexin neurons derived from human iPS cells. Epigenetics. 2017 Sep;12(9):764-778.
  • Repression of HCRT gene expression in hiONs by hyperglycemia in vitro. [2].Reactivation of hyperglycemia-induced hypocretin (HCRT) gene silencing by N-acetyl-d-mannosamine in the orexin neurons derived from human iPS cells. Epigenetics. 2017 Sep;12(9):764-778.
Contact Us