yingweiwo

N1-Methylpseudouridine

Alias: N1Methylpseudouridine; 1-Methylpseudouridine; 13860-38-3; N1-Methylpseudouridine; N1-methyl-pseudouridine; m(1)f; 09RAD4M6WF; 5-((2S,3R,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-1-methylpyrimidine-2,4(1H,3H)-dione; 2,4(1H,3H)-Pyrimidinedione, 1-methyl-5-beta-D-ribofuranosyl-; N1 Methylpseudouridine
Cat No.:V38974 Purity: ≥98%
N1-methyl-pseudouridine (1-Methylpseudouridine) is a methylpseudouridine with better translation performance than 5 mC and 5 mC/N1-methyl-pseudouridine.
N1-Methylpseudouridine
N1-Methylpseudouridine Chemical Structure CAS No.: 13860-38-3
Product category: DNA(RNA) Synthesis
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of N1-Methylpseudouridine:

  • N1-Methylpseudouridine-5′-triphosphate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
N1-methyl-pseudouridine (1-Methylpseudouridine) is a methylpseudouridine with better translation performance than 5 mC and 5 mC/N1-methyl-pseudouridine. N1-methyl-pseudouridine in mRNA enhances translation in eIF2α-dependent and independent mechanisms by increasing ribosome density.
Biological Activity I Assay Protocols (From Reference)
Targets
Nucleobase-modified nucleotide for synthesis of mRNA
ln Vitro
Nuclear modification of Luc and GFP mRNA with N1-methyl-pseudouridine improves the translation initiation step, partly through blocking eIF2α phosphorylation. In HEK293T cells, mRNA modified by inserting N1-methyl-pseudouridine produced the same amount of luc as standard Luc mRNA. Reduced formation elongation also led to increased polyribosomes and proliferation on Luc mRNA with NN1-methyl-pseudouridine. When Luc and GFP mRNA have access to N1-methyl-pseudouridine, translation is greatly improved in all external translation systems. Luc mRNA is not as crucial as N1-methyl-pseudouridine-Luc mRNA when it comes to polyribosomes [1].
ln Vivo
In mice and cell lines, N1-methylpseudouridine-incorporated mRNA combined with pseudouridine-incorporated mRNA can efficiently increase protein expression and decrease immunogenicity [2]. In vivo, m5C/N1-methyl-pseudouridine-modified mRNA is more potent than Ψ and m5C/Ψ-modified mRNA, as is the case with N1-methyl-pseudouridine (1-Mmethylpseudouridine) (20 μg; Im or id route 21 days). high proficiency in translation[2].
Animal Protocol
Animal/Disease Models: 7weeks old balb/c (Bagg ALBino) mouse [1]
Doses: 20 μg
Route of Administration: intramuscularor injection route, lasting for 21 days
Experimental Results: It has high translation ability.
References

[1]. N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Res. 2017 Jun 2;45(10):6023-6036.

[2]. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control Release. 2015 Nov 10;217:337-44.

[3]. Nance KD, Meier JL. Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS Cent Sci. 2021;7(5):748-756.

Additional Infomation
1-methylpseudouridine is a methylpseudouridine in which the methyl group is located at position N-1 on the uracil ring.
1-Methylpseudouridine has been reported in Streptomyces platensis and Streptomyces lincolnensis with data available.
Certain chemical modifications confer increased stability and low immunogenicity to in vitro transcribed mRNAs, thereby facilitating expression of therapeutically important proteins. Here, we demonstrate that N1-methyl-pseudouridine (N1mΨ) outperforms several other nucleoside modifications and their combinations in terms of translation capacity. Through extensive analysis of various modified transcripts in cell-free translation systems, we deconvolute the different components of the effect on protein expression independent of mRNA stability mechanisms. We show that in addition to turning off the immune/eIF2α phosphorylation-dependent inhibition of translation, the incorporated N1mΨ nucleotides dramatically alter the dynamics of the translation process by increasing ribosome pausing and density on the mRNA. Our results indicate that the increased ribosome loading of modified mRNAs renders them more permissive for initiation by favoring either ribosome recycling on the same mRNA or de novo ribosome recruitment.[1]
Messenger RNA as a therapeutic modality is becoming increasingly popular in the field of gene therapy. The realization that nucleobase modifications can greatly enhance the properties of mRNA by reducing the immunogenicity and increasing the stability of the RNA molecule (the Kariko paradigm) has been pivotal for this revolution. Here we find that mRNAs containing the N(1)-methylpseudouridine (m1Ψ) modification alone and/or in combination with 5-methylcytidine (m5C) outperformed the current state-of-the-art pseudouridine (Ψ) and/or m5C/Ψ-modified mRNA platform by providing up to ~44-fold (when comparing double modified mRNAs) or ~13-fold (when comparing single modified mRNAs) higher reporter gene expression upon transfection into cell lines or mice, respectively. We show that (m5C/)m1Ψ-modified mRNA resulted in reduced intracellular innate immunogenicity and improved cellular viability compared to (m5C/)Ψ-modified mRNA upon in vitro transfection. The enhanced capability of (m5C/)m1Ψ-modified mRNA to express proteins may at least partially be due to the increased ability of the mRNA to evade activation of endosomal Toll-like receptor 3 (TLR3) and downstream innate immune signaling. We believe that the (m5C/)m1Ψ-mRNA platform presented here may serve as a new standard in the field of modified mRNA-based therapeutics.[2]
The novel coronavirus SARS-CoV-2, the cause of the COVID-19 pandemic, has inspired one of the most efficient vaccine development campaigns in human history. A key aspect of COVID-19 mRNA vaccines is the use of the modified nucleobase N1-methylpseudouridine (m1Ψ) to increase their effectiveness. In this Outlook, we summarize the development and function of m1Ψ in synthetic mRNAs. By demystifying how a novel element within these medicines works, we aim to foster understanding and highlight future opportunities for chemical innovation.[3]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C₁₀H₁₄N₂O₆
Molecular Weight
258.23
Exact Mass
258.085
Elemental Analysis
C, 46.51; H, 5.46; N, 10.85; O, 37.17
CAS #
13860-38-3
Related CAS #
N1-Methylpseudouridine-5′-triphosphate trisodium;N1-Methylpseudouridine-5′-triphosphate;1428903-59-6;N1-Methylpseudouridine-d3
PubChem CID
99543
Appearance
White to off-white solid powder
Density
1.576g/cm3
Melting Point
189 °C
Index of Refraction
1.618
LogP
-2.6
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
2
Heavy Atom Count
18
Complexity
409
Defined Atom Stereocenter Count
4
SMILES
CN1C=C(C(=O)NC1=O)[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O
InChi Key
UVBYMVOUBXYSFV-XUTVFYLZSA-N
InChi Code
InChI=1S/C10H14N2O6/c1-12-2-4(9(16)11-10(12)17)8-7(15)6(14)5(3-13)18-8/h2,5-8,13-15H,3H2,1H3,(H,11,16,17)/t5-,6-,7-,8+/m1/s1
Chemical Name
5-[(2S,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1-methylpyrimidine-2,4-dione
Synonyms
N1Methylpseudouridine; 1-Methylpseudouridine; 13860-38-3; N1-Methylpseudouridine; N1-methyl-pseudouridine; m(1)f; 09RAD4M6WF; 5-((2S,3R,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-1-methylpyrimidine-2,4(1H,3H)-dione; 2,4(1H,3H)-Pyrimidinedione, 1-methyl-5-beta-D-ribofuranosyl-; N1 Methylpseudouridine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~125 mg/mL (~484.1 mM)
H2O: ~50 mg/mL (~193.6 mM
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (8.05 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (8.05 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (8.05 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 50 mg/mL (193.63 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.8725 mL 19.3626 mL 38.7252 mL
5 mM 0.7745 mL 3.8725 mL 7.7450 mL
10 mM 0.3873 mL 1.9363 mL 3.8725 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us