Size | Price | Stock | Qty |
---|---|---|---|
500mg |
|
||
1g |
|
||
5g |
|
||
10g |
|
||
Other Sizes |
|
Purity: ≥98%
NAD+ is a naturally occurring coenzyme, oxidizing agent, and electron acceptor consisting of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by a pyrophosphate linkage.
Targets |
Endogenous Metabolite
|
---|---|
ln Vitro |
NAD+ is a coenzyme made up of pyrophosphate bonds connecting adenosine 5'-phosphate and ribosyl nicotinamide 5'-diphosphate. The oxidized form of NADH is called NAD+ [1]. Widespread throughout nature, NAD+ serves as an electron carrier in numerous enzymatic activities by alternating between oxidation (NAD+) and reduction (Nadide) [2].
|
ln Vivo |
Oral NAD+ supplements have been utilized to treat energy-draining, unexplained diseases like fibromyalgia and chronic fatigue syndrome, as well as simple weariness [3].
|
Enzyme Assay |
Redox Titrations Using NADH and NAD+. [3]
NADH was repurified in a glovebox (O2 < 2 ppm) by anion exchange chromatography (5-ml HiTrap Q-Sepharose column) to remove contaminating NAD+. After experimentation, the integrity of the NADH stock solution was reevaluated (0.08 ± 0.04% NAD+ formed in 6 h). Typically, redox potentials were set by using 30 μM NADH and a varying amount of NAD+ (Sigma), and the low potential limit was checked by using the NADH regenerating system. EPR.[3] Complex I (10 mg ml−1) was reduced anaerobically by 1 mM purified NADH or by dialysis against purified NADH (≈−0.4 V) or to ≈−0.3 V by using 1 mM NADH and 10 mM NAD+, and frozen immediately. Spectra were recorded on a Bruker EMX X-band spectrometer by using an ER 4119HS high-sensitivity cavity and a ESR900 continuous-flow liquid helium cryostat [3]. |
Animal Protocol |
NADH:ubiquinone oxidoreductase (complex I) is a major source of reactive oxygen species in mitochondria and a significant contributor to cellular oxidative stress. Here, we describe the kinetic and molecular mechanism of superoxide production by complex I isolated from bovine heart mitochondria and confirm that it produces predominantly superoxide, not hydrogen peroxide. Redox titrations and electron paramagnetic resonance spectroscopy exclude the iron-sulfur clusters and flavin radical as the source of superoxide, and, in the absence of a proton motive force, superoxide formation is not enhanced during turnover. Therefore, superoxide is formed by the transfer of one electron from fully reduced flavin to O2. The resulting flavin radical is unstable, so the remaining electron is probably redistributed to the iron-sulfur centers. The rate of superoxide production is determined by a bimolecular reaction between O2 and reduced flavin in an empty active site. The proportion of the flavin that is thus competent for reaction is set by a preequilibrium, determined by the dissociation constants of NADH and NAD+, and the reduction potentials of the flavin and NAD+. Consequently, the ratio and concentrations of NADH and NAD+ determine the rate of superoxide formation. This result clearly links our mechanism for the isolated enzyme to studies on intact mitochondria, in which superoxide production is enhanced when the NAD+ pool is reduced. Therefore, our mechanism forms a foundation for formulating causative connections between complex I defects and pathological effects.[3]
|
Toxicity/Toxicokinetics |
mouse LD50 intraperitoneal 4333 mg/kg Pharmaceutical Chemistry Journal, 20(160), 1986
|
References |
|
Additional Infomation |
NAD zwitterion is a NAD. It has a role as a geroprotector. It is functionally related to a deamido-NAD zwitterion. It is a conjugate base of a NAD(+).
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Nadide has been reported in Homo sapiens with data available. Nadide is a dinucleotide of adenine and nicotinamide. It has coenzyme activity in redox reactions and also acts as a donor of ADP-ribose moieties. A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) |
Molecular Formula |
C21H27N7O14P2.3H2O
|
---|---|
Molecular Weight |
717.47
|
Exact Mass |
663.109
|
Elemental Analysis |
C, 38.02; H, 4.10; N, 14.78; O, 33.76; P, 9.34
|
CAS # |
53-84-9
|
Related CAS # |
NAD+-13C5 ammonium;NAD+-d4;NAD+-13C5-1;1859096-06-2;NAD+ lithium;64417-72-7; 53-84-9 (free acid); 20111-18-6 (sodium); 58-68-4 (reduced)
|
PubChem CID |
5892
|
Appearance |
White to off-white solid
|
Melting Point |
140 - 142ºC
|
Source |
Gut microbial/endogenous metabolite
|
LogP |
-5.72
|
Hydrogen Bond Donor Count |
7
|
Hydrogen Bond Acceptor Count |
18
|
Rotatable Bond Count |
11
|
Heavy Atom Count |
44
|
Complexity |
1120
|
Defined Atom Stereocenter Count |
8
|
SMILES |
P(=O)(O[H])(OP(=O)([O-])OC([H])([H])[C@]1([H])[C@]([H])([C@]([H])([C@]([H])([N+]2=C([H])C([H])=C([H])C(C(N([H])[H])=O)=C2[H])O1)O[H])O[H])OC([H])([H])[C@]1([H])[C@]([H])([C@]([H])([C@]([H])(N2C([H])=NC3=C(N([H])[H])N=C([H])N=C23)O1)O[H])O[H]
|
InChi Key |
BAWFJGJZGIEFAR-NNYOXOHSSA-N
|
InChi Code |
InChI=1S/C21H27N7O14P2/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(32)14(30)11(41-21)6-39-44(36,37)42-43(34,35)38-5-10-13(29)15(31)20(40-10)27-3-1-2-9(4-27)18(23)33/h1-4,7-8,10-11,13-16,20-21,29-32H,5-6H2,(H5-,22,23,24,25,33,34,35,36,37)/t10-,11-,13-,14-,15-,16-,20-,21-/m1/s1
|
Chemical Name |
1-((2R,3R,4S,5R)-5-((((((((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)(hydroxy)phosphoryl)oxy)oxidophosphoryl)oxy)methyl)-3,4-dihydroxytetrahydrofuran-2-yl)-3-carbamoylpyridin-1-ium
|
Synonyms |
β-DPNNSC-20272; Nadide; NSC 20272; NSC20272; beta-NAD; beta NAD; Enzopride Nadida; Codehydrase I; nadide; 53-84-9; NAD+; coenzyme I; beta-NAD; Codehydrogenase I; diphosphopyridine nucleotide; beta-nicotinamide adenine dinucleotide;NAD; NAD+; Nadidum; Nicotinamide; adenine dinucleotide
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ~41.67 mg/mL (~62.81 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: 100 mg/mL (150.73 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication (<60°C).
 (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.3938 mL | 6.9689 mL | 13.9379 mL | |
5 mM | 0.2788 mL | 1.3938 mL | 2.7876 mL | |
10 mM | 0.1394 mL | 0.6969 mL | 1.3938 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.