yingweiwo

Navitoclax dihydrochloride

Alias: NAVITOCLAX DIHYDROCHLORIDE; Navitoclax dihydrochloride [USAN]; 1093851-28-5; W8FZ00AY2S; A-855071.3; Navitoclax dihydrochloride (USAN); Navitoclax HCl; 4-(4-((2-(4-Chlorophenyl)-5,5-dimethylcyclohex-1-en-1-yl)methyl)piperazin-1-yl)-N-((4- (((2R)-4-(morpholin-4-yl)-1-(phenylsulfanyl)butan-2-yl)amino)-3- ((trifluoromethyl)sulfonyl)phenyl)sulfonyl)benzamide dihydrochloride;
Cat No.:V41829 Purity: ≥98%
Navitoclax dihydrochloride, B-cell leukemia 2 (Bcl-2) inhibitor
Navitoclax dihydrochloride
Navitoclax dihydrochloride Chemical Structure CAS No.: 1093851-28-5
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Navitoclax dihydrochloride:

  • Navitoclax (ABT-263)
  • Navitoclax-piperazine
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Navitoclax dihydrochloride is an orally active, synthetic small molecule and an antagonist of a subset of the B-cell leukemia 2 (Bcl-2) family of proteins with potential antineoplastic activity. Navitoclax selectively binds to apoptosis suppressor proteins Bcl-2, Bcl-XL, and Bcl-w, which are frequently overexpressed in a wide variety of cancers, including those of the lymph, breast, lung, prostate, and colon, and are linked to tumor drug resistance. Inhibition of these apoptosis suppressors prevents their binding to the apoptotic effectors Bax and Bak proteins, thereby triggering apoptotic processes in cells overexpressing Bcl-2, Bcl-XL, and Bcl-w. This eventually reduces tumor cell proliferation.
Biological Activity I Assay Protocols (From Reference)
Targets
Bcl-W (Ki=1 nM); Bcl-xL (Ki=1 nM); Bcl-2 (Ki=1 nM)
ln Vitro
The Bcl-2/Bcl-xL interactions with pro-apoptotic proteins are disrupted by ABT-263, which is structurally related to ABT-737. The maintenance, progression, and chemoresistance of tumors are frequently linked to overexpression of prosurvival Bcl-2 family members. ABT-263 exhibits the defense provided by overexpression of Bcl-2 or Bcl-xL with EC50 values of 60 nM and 20 nM, respectively. ABT-263 inhibits 50% of growth in the most sensitive line (H146) with an EC50 of 110 nM, whereas the least sensitive line (H82) exhibits a wide range of cellular activity with an EC50 of 22 M. The two most resistant cell lines (H1048 and H82) are also similarly resistant to ABT-263, as are all four cell lines (H146, H889, H1963, and H1417) with EC50 values of less than 400 nM.
ln Vivo
In the H345 xenograft model, significant antitumor efficacy is seen with 80% TGI and 20% of treated tumors indicating at least a 50% reduction in tumor volume. In xenograft models of small-cell lung cancer and acute lymphoblastic leukemia, oral administration of ABT-263 alone results in total tumor regressions. ABT-263 significantly improves the efficacy of clinically pertinent therapeutic regimens in xenograft models of aggressive B-cell lymphoma and multiple myeloma, where it exhibits modest or no single agent activity.
Enzyme Assay
Binding affinities (Ki or IC50) of ABT-263 against different isoforms of Bcl-2 family are determined with competitive fluorescence polarization assays. The following peptide probe/protein pairs are used: f-bad (1 nM) and Bcl-xL (6 nM), f-Bax (1 nM) and Bcl-2 (10 nM), f-Bax (1 nM) and Bcl-w (40 nM), f-Noxa (2 nM) and Mcl-1 (40 nM), and f-Bax (1 nM) and Bcl-2-A1 (15 nM). Binding affinities for Bcl-xL are also determined using a time-resolved fluorescence resonance energy transfer assay. Bcl-xL (1 nM, His tagged) is mixed with 200 nM f-Bak, 1 nM Tb-labeled anti-His antibody, and ABT-263 at room temperature for 30 min. Fluorescence is measured on an Envision plate reader using a 340/35 nm excitation filter and 520/525 (f-Bak) and 495/510 nm (Tb-labeled anti-His antibody) emission filters.
Cell Assay
Human tumor cell lines SCLC cell lines are maintained at 37℃ containing 5% CO2. SCLC cell lines are cultured in RPMI 1640 with 10% fetal bovine serum (FBS), 1% sodium pyruvate, 25 mM HEPES, 4.5 g/L glucose, and 1% penicillin/streptomycin. Leukemia and lymphoma cell lines are cultured in RPMI 1640 supplemented with 10% FBS and 1% penicillin/streptomycin. Cells (1-5×10 4) are treated by ABT-263 for 48 hours in 96-well culture plates in a final volume of 100 μL and cytotoxicity is assessed with the CellTiter Glo assay. In vitro cyto toxicity of ABT-263 is assayed.
Animal Protocol
ABT-263 was dissolved in 60% Phosal 50 PG (w/w), 30% PEG 400 (w/w), 10% ethanol (w/w) and administered orally at its maximum tolerated dose of 100 mg/kg daily × 21 days. ABT-263 was provided to each consortium investigator in coded vials for blinded testing, according to the PPTP's standard operating procedures. CB17SC-M scid−/− female mice were used to propagate subcutaneously implanted kidney/rhabdoid tumors, sarcomas (Ewing, osteosarcoma, rhabdomyosarcoma), neuroblastoma, and non-glioblastoma brain tumors, while BALB/c nu/nu mice were used for glioma models. Human leukemia cells were propagated by intravenous inoculation in female non-obese diabetic (NOD)/scid−/− mice as described previously. [1]
References
[1]. Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008 Jun;50(6):1181-1189.
[2]. Navitoclax (ABT-263) reduces Bcl-x(L)-mediated chemoresistance in ovarian cancer models.Mol Cancer Ther. 2012 Apr;11(4):1026-1035.
[3]. The Bcl-2/Bcl-X(L)/Bcl-w inhibitor, navitoclax, enhances the activity of chemotherapeutic agents in vitro and in vivo. Mol Cancer Ther. 2011 Dec;10(12):2340-9.
Additional Infomation
ABT-263 is a potent (K(i) < 1 nM) small-molecule BH3 mimetic that inhibits the antiapoptotic proteins Bcl-2, Bcl-x(L) and Bcl-w. The structurally related Bcl-2 inhibitor ABT-737 exhibits single-agent preclinical activity against lymphoma, small-cell lung carcinoma, and chronic lymphocytic leukemia and displays synergistic cytotoxicity with chemotherapeutics and radiation.ABT-263 demonstrated in vitro activity against a range of cell lines, with the ALL cell lines showing the greatest sensitivity. ABT-263 demonstrated limited single agent in vivo activity against the PPTP's solid tumor panels but showed significant activity against xenografts in the ALL panel.[1]
To examine the potential of combining Bcl-2 family inhibitors with chemotherapy in ovarian cancer, we evaluated a panel of 27 ovarian cancer cell lines for response to the combination of navitoclax (formerly ABT-263) and paclitaxel or gemcitabine. The majority of cell lines exhibited a greater than additive response to either combination, as determined by the Bliss independence model, and more than 50% of the ovarian cell lines exhibited strong synergy for the navitoclax/paclitaxel combination. To identify biomarkers for tumors likely to respond to this combination, we evaluated the protein levels of intrinsic apoptosis pathway components. Bcl-x(L) seems necessary, but not sufficient, for navitoclax/paclitaxel synergy in vitro, suggesting that exclusion of patients whose tumors have low or undetectable Bcl-x(L) would enrich for patients responsive to the combination. We evaluated Bcl-x(L) levels in ovarian cancer tumor tissue from 40 patients (20 taxane responsive and 20 with poor response to taxane) and found that patients with high Bcl-x(L) were less sensitive to taxane treatment (10 of 12) Bcl-x(L) positive patients, P = 0.014). These data support the use of navitoclax in combination with taxane-based therapy in ovarian cancer patients with high levels of Bcl-x(L).[2]
The ability of a cancer cell to avoid apoptosis is crucial to tumorigenesis and can also contribute to chemoresistance. The Bcl-2 family of prosurvival proteins (Bcl-2, Bcl-X(L), Bcl-w, Mcl-1, and A1) plays a key role in these processes. We previously reported the discovery of ABT-263 (navitoclax), a potent small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-w. While navitoclax exhibits single-agent activity in tumors dependent on Bcl-2 or Bcl-X(L) for survival, the expression of Mcl-1 has been shown to confer resistance to navitoclax, most notably in solid tumors. Thus, therapeutic agents that can downregulate or neutralize Mcl-1 are predicted to synergize potently with navitoclax. Here, we report the activity of navitoclax in combination with 19 clinically relevant agents across a panel of 46 human solid tumor cell lines. Navitoclax broadly enhanced the activity of multiple therapeutic agents in vitro and enhanced efficacy of both docetaxel and erlotinib in xenograft models. The ability of navitoclax to synergize with docetaxel or erlotinib corresponded to an altered sensitivity of the mitochondria toward navitoclax, which was associated with the downmodulation of Mcl-1 and/or upregulation of Bim. These data provide a rationale to interrogate these combinations clinically.[3]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C47H57CL3F3N5O6S3
Molecular Weight
1047.53459620476
Exact Mass
1,045.25
Elemental Analysis
C, 53.89; H, 5.48; Cl, 10.15; F, 5.44; N, 6.69; O, 9.16; S, 9.18
CAS #
1093851-28-5
Related CAS #
923564-51-6; 1093851-28-5 (HCl); 2143096-93-7 (Navitoclax-piperazine)
PubChem CID
46937443
Appearance
Typically exists as solids
LogP
13.0
tPSA
170Ų
InChi Key
WDVGRPCSLPVWKC-VROLVAQFSA-N
InChi Code
InChI=1S/C47H55ClF3N5O6S3.2ClH/c1-46(2)20-18-42(34-8-12-37(48)13-9-34)36(31-46)32-55-22-24-56(25-23-55)39-14-10-35(11-15-39)45(57)53-65(60,61)41-16-17-43(44(30-41)64(58,59)47(49,50)51)52-38(19-21-54-26-28-62-29-27-54)33-63-40-6-4-3-5-7-40;;/h3-17,30,38,52H,18-29,31-33H2,1-2H3,(H,53,57);2*1H/t38-;;/m1../s1
Chemical Name
4-[4-[[2-(4-chlorophenyl)-5,5-dimethylcyclohexen-1-yl]methyl]piperazin-1-yl]-N-[4-[[(2R)-4-morpholin-4-yl-1-phenylsulfanylbutan-2-yl]amino]-3-(trifluoromethylsulfonyl)phenyl]sulfonylbenzamide;dihydrochloride
Synonyms
NAVITOCLAX DIHYDROCHLORIDE; Navitoclax dihydrochloride [USAN]; 1093851-28-5; W8FZ00AY2S; A-855071.3; Navitoclax dihydrochloride (USAN); Navitoclax HCl; 4-(4-((2-(4-Chlorophenyl)-5,5-dimethylcyclohex-1-en-1-yl)methyl)piperazin-1-yl)-N-((4- (((2R)-4-(morpholin-4-yl)-1-(phenylsulfanyl)butan-2-yl)amino)-3- ((trifluoromethyl)sulfonyl)phenyl)sulfonyl)benzamide dihydrochloride;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.9546 mL 4.7731 mL 9.5462 mL
5 mM 0.1909 mL 0.9546 mL 1.9092 mL
10 mM 0.0955 mL 0.4773 mL 0.9546 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us