yingweiwo

Neostigmine Bromide (Eustigmin; Neoserine)

Alias: Eustigmin bromide; Eustigmin bromide; Neoserine bromide; Vagostigmin; Kirkstigmine bromide; Syntostigmin bromide; 3-((Dimethylcarbamoyl)oxy)-N,N,N-trimethylbenzenaminium bromide; Neoserine bromide
Cat No.:V1180 Purity: ≥98%
Neostigmine Bromide (Eustigmin bromide; Neoserine bromide) is a reversible acetylcholinesterase inhibitor and a medication used to treat myasthenia gravis, Ogilvie syndrome, and urinary retention without the presence of a blockage.
Neostigmine Bromide (Eustigmin; Neoserine)
Neostigmine Bromide (Eustigmin; Neoserine) Chemical Structure CAS No.: 114-80-7
Product category: AChR Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
250mg
500mg
1g
2g
5g
10g
Other Sizes

Other Forms of Neostigmine Bromide (Eustigmin; Neoserine):

  • Neostigmine methylsulfate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Neostigmine Bromide (Eustigmin bromide; Neoserine bromide) is a reversible acetylcholinesterase inhibitor and a medication used to treat myasthenia gravis, Ogilvie syndrome, and urinary retention without the presence of a blockage. It is marketed under the brand name Prostigmin among others. It is also used together with atropine to end the effects of neuromuscular blocking medication of the non-depolarizing type.

Biological Activity I Assay Protocols (From Reference)
Targets
Acetylcholinesterase/AChE
ln Vitro
Acetylcholinesterase inhibitors, including Neostigmine, have been used to reverse neuromuscular blockage for many years. Sugammadex reverses this blockage using its gamma cyclodextrin ring, a mechanism that differs from that of cholinesterases and so circumvents the side effects of Neostigmine. Although the superiority of Sugammadex to Neostigmine has been outlined in several clinical studies, to our knowledge, there is not any research into cell culture that compares the cytotoxic, genotoxic and apoptotic effects of the two drugs. Hence, this is the first study to compare the cytotoxic, genotoxic and apoptotic effects of different dosages of both drugs on human embryonic renal (HEK-293) cells. In this study, the cytotoxicity, genotoxicity and apoptotic effects of Sugammadex and Neostigmine on HEK-293 cells were analyzed with using the MTT, Comet Assay and Flow Cytometric Annexin-V methods, respectively. The results demonstrate that Neostigmine at 50, 100, 250, and 500 µg/mL is more cytotoxic than equivalent dosages of Sugammadex. Neostigmine at 500 and 1000 µg/mL was found to be more genotoxic, and Neostigmine at 500 µg/mL had a statistically higher risk of causing apoptosis and necrosis than Sugammadex (p<0.05). Neostigmine administered in-vitro in the same doses as Sugammadex had greater cytotoxic, genotoxic and apoptotic effects on HEK-293 cells[1].
ln Vivo
During chronic inflammatory disease, such asthma, leukocytes can invade the central nervous system (CNS) and together with CNS-resident cells, generate excessive reactive oxygen species (ROS) production as well as disbalance in the antioxidant system, causing oxidative stress, which contributes a large part to neuroinflammation. In this sense, the aim of this study is to investigate the effects of treatment with neostigmine, known for the ability to control lung inflammation, on oxidative stress in the cerebral cortex of asthmatic mice. Female BALB/cJ mice were submitted to asthma model induced by ovalbumin (OVA). Control group received only Dulbecco's phosphate-buffered saline (DPBS). To evaluate neostigmine effects, mice received 80 μg/kg of neostigmine intraperitoneally 30 min after each OVA challenge. Our results revealed for the first time that treatment with neostigmine (an acetylcholinesterase inhibitor that no crosses the BBB) was able to revert ROS production and change anti-oxidant enzyme catalase in the cerebral cortex in asthmatic mice. These results support the communication between the peripheral immune system and the CNS and suggest that acetylcholinesterase inhibitors, such as neostigmine, should be further studied as possible therapeutic strategies for neuroprotection in asthma[2].
Animal Protocol
Sensitization, airway challenge and neostigmine treatment[2] The animals were sensitized by subcutaneous injections of 20 μg ovalbumin (OVA), diluted (200 μL) in Dulbecco’s phosphate-buffered saline (DPBS), on days 0 and 7, followed by three intranasal challenges with 100 μg of OVA, diluted in DPBS (50 μL), on days 14, 15, and 16 of the protocol. The control group received only DPBS in the sensitization and intranasal challenges. To evaluate neostigmine effects on the oxidative stress in the cerebral cortex, the mice received 80 μg/kg of neostigmine treatment intraperitoneally (Hofer et al. 2008) once a day during three consecutive days (14, 15, and 16) 30 min after of OVA challenge. On day 17 of the protocol, animals were anesthetized by intraperitoneal injection solution of ketamine (0.4 mg/g) and xylazine (0.2 mg/g) followed euthanasia by heart puncture exsanguination. Bronchoalveolar lavage (BAL), lung tissue and cerebral cortex for analyzes were collected. The study protocol is illustrated in Fig. 1.
References
[1].Comparison of the cytotoxic, genotoxic and apoptotic effects of Sugammadex and Neostigmine on human embryonic renal cell (HEK-293). Cell Mol Biol (Noisy-le-grand). 2018 Oct 30;64(13):74-78.
[2].Neostigmine treatment induces neuroprotection against oxidative stress in cerebral cortex of asthmatic mice. Metab Brain Dis. 2020 Jun;35(5):765-774.
[3]. Clin Colon Rectal Surg.2005 May;18(2):96-101.
Additional Infomation
Neostigmine bromide is the bromide salt of neostigmine. It contains a neostigmine.
A cholinesterase inhibitor used in the treatment of myasthenia gravis and to reverse the effects of muscle relaxants such as gallamine and tubocurarine. Neostigmine, unlike PHYSOSTIGMINE, does not cross the blood-brain barrier.
Parasympathomimetics: Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here.
Cholinesterase Inhibitors: Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C12H19N2O2.BR
Molecular Weight
303.2
Exact Mass
302.06298
Elemental Analysis
C, 47.54; H, 6.32; Br, 26.35; N, 9.24; O, 10.55
CAS #
114-80-7
Related CAS #
Neostigmine methyl sulfate;51-60-5
PubChem CID
8246
Appearance
White to off-white solid powder
Melting Point
175-177 °C
tPSA
29.54
SMILES
[Br-].O(C(N(C([H])([H])[H])C([H])([H])[H])=O)C1=C([H])C([H])=C([H])C(=C1[H])[N+](C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H]
InChi Key
LULNWZDBKTWDGK-UHFFFAOYSA-M
InChi Code
InChI=1S/C12H19N2O2.BrH/c1-13(2)12(15)16-11-8-6-7-10(9-11)14(3,4)5;/h6-9H,1-5H3;1H/q+1;/p-1
Chemical Name
3-((dimethylcarbamoyl)oxy)-N,N,N-trimethylbenzenaminium bromide
Synonyms
Eustigmin bromide; Eustigmin bromide; Neoserine bromide; Vagostigmin; Kirkstigmine bromide; Syntostigmin bromide; 3-((Dimethylcarbamoyl)oxy)-N,N,N-trimethylbenzenaminium bromide; Neoserine bromide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:<1 mg/mL
Water:60 mg/mL (197.9 mM)
Ethanol:<1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (8.25 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (8.25 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (8.25 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 100 mg/mL (329.82 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.2982 mL 16.4908 mL 32.9815 mL
5 mM 0.6596 mL 3.2982 mL 6.5963 mL
10 mM 0.3298 mL 1.6491 mL 3.2982 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03058263 Completed Drug: Dose of Neostigmine Muscle Relaxant
General Anesthesia
Indonesia University October 2016 Phase 1
Phase 2
NCT03316963 Terminated Drug: Neostigmine Methylsulfate Snoring Emory University November 14, 2017 Early Phase 1
NCT06136585 Not yet recruiting Drug: 2 mg/kg sugammadex
Drug: 0.07 mg/kg neostigmine
Neuromuscular Blocks The Cleveland Clinic May 15, 2024 Not Applicable
NCT03137290 Completed Drug: Neostigmine
Drug: Sugammadex Sodium
Neuromuscular Blockade Universiti Sains Malaysia December 1, 2014 Not Applicable
NCT04258007 Completed Drug: Reversal Neostigmine
Drug: Reversal Sugammadex
Cardiac Catheterization Mansoura University January 27, 2020 Not Applicable
Contact Us