yingweiwo

Nortriptyline

Cat No.:V19578 Purity: ≥98%
Nortriptyline, an active metabolite of amitriptyline, is a second-generation antidepressant developed by Lilly for use in major depression, childhood nocturnal enuresis, dysthymia, and atypical depressions.
Nortriptyline
Nortriptyline Chemical Structure CAS No.: 72-69-5
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
50mg
100mg
Other Sizes

Other Forms of Nortriptyline:

  • Nortriptyline HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Nortriptyline, an active metabolite of amitriptyline, is a second-generation antidepressant developed by Lilly for use in major depression, childhood nocturnal enuresis, dysthymia, and atypical depressions. It is a non-selective monoamine reuptake inhibitor.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
CYP2C19 helps amitriptyline convert to nortriptyline, which is its active metabolite. More so than serotonin, nortriptyline inhibits nortriptyline refeeding [1]. In a concentration- and time-stable manner, nortriptyline (6.25-100 μM; 24-72 hours) dramatically lowers both bladder MBT-2 bladder viability and TCCSUP [3]. In TCCSUP and MBT-2 cells, nortriptyline (12.55-100 μM; 24 hours) stimulates cell cycle signaling and cell bladder [3]. These inner and outer vaginal cells are induced by TCCSUP and MBT-2 cells at concentrations of 25 μM, 50 μM, or 100 μM (TCCSUP; 12.55-100 μM; 24 hours). In these bladder cancer cells, exposure to 12.5 μM, 25 μM, or 50 μM (MBT-2 cells) for a whole day caused cell cycle arrest. TCCSUP and MBT-2 cells undergo apoptosis when exposed to 25 μM, 50 μM, or 100 μM (TCCSUP); 12.5 μM, 25 μM, or 50 μM (MBT-2 cells). This apoptotic response lasts for 24 hours and increases the levels of Fas, FasL, FADD, Bax, Bak, and caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase. decreases the expression of survivin, X-linked apoptosis protein inhibitor, BH3 interaction domain death agonist, Bcl-2, and Bcl-xL.
ln Vivo
In MBT-2 cells, nortriptyline (10–20 mg/kg) administered intraperitoneally once a day for three weeks reduces the formation of bladder tumors [3].
Cell Assay
Cell Viability Assay[3]
Cell Types: Human TCCSUP and Mouse MBT-2 Bladder Cancer Cells
Tested Concentrations: 6.25 μM, 12.5 μM, 25 μM, 50 μM and 100 μM
Incubation Duration: 24, 48 or 72 hrs (hours)
Experimental Results: Cells exhibit Toxic effects on TCCSUP and MBT-2 cells.

Cell cycle analysis[3]
Cell Types: human TCCSUP and mouse MBT-2 Bladder cancer cell
Tested Concentrations: 25 μM, 50 μM or 100 μM (TCCSUP); 12.5 μM, 25 μM or 50 μM (MBT-2 cells)
Incubation Duration: 24 hour
Experimental Results: Caused cell cycle arrest in these bladder cancer cells.

Apoptosis analysis[3]
Cell Types: human TCCSUP and mouse MBT-2 Bladder cancer cells
Tested Concentrations: 25 μM, 50 μM or 100 μM (TCCSUP); 12.5 μM, 25 μM or 50 μM (MBT-2 cells)
Incubation Duration: 24 hrs (hours)
Experimental Results: Induction of apoptosis in TCCSUP and MBT-2 cells.

Western Blot Analysis[3]
Cell Types: human TCCSUP and mouse MBT-2 Bladder cancer cells
Tested Concentrations: 25 μM, 50 μM or 100 μM (TCCSUP); 12.5 μM, 25 μM or 50 μM (MBT-2 cells)
Incubation Duration: 24 hrs (hours)
Experimental Results: Increased expression of Fas, Fa
Animal Protocol
Animal/Disease Models: Adult male C3H/HeN mice (25-30 g; 2-3 months old) were injected with MBT-2 cells [3]
Doses: 10 or 20 mg/kg
Route of Administration: intraperitoneal (ip) injection; daily; three Week.
Experimental Results: Tumor growth was inhibited in mice vaccinated with MBT-2 cells.
References
[1]. Dean L. Amitriptyline Therapy and CYP2D6 and CYP2C19 Genotype. In: Pratt VM, Scott SA, Pirmohamed M, et al., eds. Medical Genetics Summaries. Bethesda (MD): National Center for Biotechnology Information (US); March 23, 2017.
[2]. Petrosyan E, et al. Repurposing Autophagy Regulators in Brain Tumors [published online ahead of print, 2022 Feb 18]. Int J Cancer. 2022;10.1002/ijc.33965.
[3]. Sheau-Yun Yuan, et al. Nortriptyline induces mitochondria and death receptor-mediated apoptosis in bladder cancer cells and inhibits bladder tumor growth in vivo. Eur J Pharmacol. 2015 Aug 15:761:309-20.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H21N
Molecular Weight
263.37674
CAS #
72-69-5
Related CAS #
Nortriptyline hydrochloride;894-71-3
Appearance
Typically exists as solids (or liquids in special cases) at room temperature
SMILES
CNCC/C=C1\C2=CC=CC=C2CCC2=CC=CC=C\12
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.7968 mL 18.9840 mL 37.9680 mL
5 mM 0.7594 mL 3.7968 mL 7.5936 mL
10 mM 0.3797 mL 1.8984 mL 3.7968 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us